Altered neurotrophic support as a result of reduced brainderived neurotrophic factor (BDNF) expre... more Altered neurotrophic support as a result of reduced brainderived neurotrophic factor (BDNF) expression and trafficking has been revealed as a key factor in Huntington disease (HD) pathology. BDNF binds to and activates the tyrosine kinase receptor TrkB, leading to activation of intracellular signaling pathways to promote differentiation and cell survival. In order to design new neuroprotective therapies based on BDNF delivery, it is important to define whether BDNF-mediated TrkB signaling is affected in HD. Here, we demonstrate reduced TrkB-mediated Ras/MAPK/ERK1/2 signaling but unchanged phosphatidylinositol 3-kinase/Akt and phospholipase C␥ activation in knock-in HD striatal cells. Altered BDNF-mediated ERK1/2 activation in mutant huntingtin cells is associated with reduced expression of p52/p46 Shc docking proteins. Notably, reduced BDNF-induced ERK1/2 activation increases the sensitivity of mutant huntingtin striatal cells to oxidative damage. Accordingly, pharmacological activation of the MAPK pathway with PMA prevents cell death induced by oxidative stress. Taken together, our results suggest that in addition to reduced BDNF, diminished Ras/MAPK/ERK1/2 activation is involved in neurotrophic deficits associated with HD pathology. Therefore, pharmacological approaches aimed to directly modulate the MAPK/ ERK1/2 pathway may represent a valuable therapeutic strategy in HD.
Mitochondria-associated membranes (MAMs) are dynamic structures that communicate endoplasmic reti... more Mitochondria-associated membranes (MAMs) are dynamic structures that communicate endoplasmic reticulum (ER) and mitochondria allowing calcium transfer between these two organelles. Since calcium dysregulation is an important hallmark of several neurodegenerative diseases, disruption of MAMs has been speculated to contribute to pathological features associated with these neurodegenerative processes. In Huntington's disease (HD), mutant huntingtin induces the selective loss of medium spiny neurons within the striatum. The cause of this specific susceptibility remain unclear. However, defects on mitochondrial dynamics and bioenergetics have been proposed as critical contributors, causing accumulation of fragmented mitochondria and subsequent Ca 2+ homeostasis alterations. In the present work, we show that aberrant Drp1-mediated mitochondrial fragmentation within the striatum of HD mutant mice, forces mitochondria to place far away from the ER disrupting the ER-mitochondria association and therefore causing drawbacks in Ca 2+ efflux and an excessive production of mitochondria superoxide species. Accordingly, inhibition of Drp1 activity by Mdivi-1 treatment restored ERmitochondria contacts, mitochondria dysfunction and Ca 2+ homeostasis. In sum, our results give new insight on how defects on mitochondria dynamics may contribute to striatal vulnerability in HD and highlights MAMs dysfunction as an important factor involved in HD striatal pathology.
Pyk2 is a Ca-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in... more Pyk2 is a Ca-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but at 3 months. We crossed these mice with Pyk2 mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2 double mutant mice was not different from that of 5XFA...
{"__content__"=>"Early Downregulation of p75 by Genetic and Pharmacological Approaches Delays the Onset of Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice.", "sup"=>{"__content__"=>"NTR"}}
Molecular neurobiology, Jan 27, 2018
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin re... more Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 expression. Genetic normalization of p75 expression in KI mutant mice delayed the onset of motor deficits and striatal neuropath...
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, Jan 19, 2017
The dorsal striatum is a key node for many neurobiological processes such as motor activity, cogn... more The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically-modified animal models, together with biochemical and pharmacological approaches, we ...
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the ap... more Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2015
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still... more The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Huntington's disease features the loss of striatal neurons that stems from a disease process that... more Huntington's disease features the loss of striatal neurons that stems from a disease process that is initiated by mutant huntingtin. Early events in the disease cascade, which predate overt pathology in Hdh CAG knock-in mouse striatum, implicate enhanced N-methyl-D-aspartate (NMDA) receptor activation, with excitotoxity caused by aberrant Ca 2؉ influx. Here we demonstrate in precise genetic Huntington's disease mouse and striatal cell models that these early phenotypes are associated with activation of the Akt pro-survival signaling pathway. Elevated levels of activated Ser(P) 473-Akt are detected in extracts of Hdh Q111/Q111 striatum and cultured mutant STHdh Q111/Q111 striatal cells, compared with their wild type counterparts. Akt activation in mutant striatal cells is associated with increased Akt signaling via phosphorylation of GSK3 at Ser 9. Consequent decreased turnover of transcription co-factor -catenin leads to increased levels of -catenin target gene cyclin D1. Akt activation is phosphatidylinositol 3-kinase dependent, as demonstrated by increased levels of Ser(P) 241-PDK1 kinase and decreased Ser(P) 380-PTEN phosphatase. Moreover, Akt activation can be normally stimulated by treatment with insulin growth factor-1 and blocked by treatment with the phosphatidylinositol 3-kinase inhibitor LY294002. However, in contrast to wild type cells, Akt activation in mutant striatal cells can be blocked by the addition of the NMDA receptor antagonist MK-801. Akt activation in mutant striatal cells is Ca 2؉-dependent, because treatment with EGTA reduces levels of Ser(P) 473-Akt. Thus, consistent with excitotoxicity early in the disease process, activation of the Akt pro-survival pathway in mutant knock-in striatal cells predates overt pathology and reflects mitochondrial dysfunction and enhanced NMDA receptor signaling.
Defects in gene transcription and mitochondrial function have been implicated in the dominant dis... more Defects in gene transcription and mitochondrial function have been implicated in the dominant disease process that leads to the loss of striatal neurons in Huntington's disease (HD). Here we have used precise genetic HD mouse and striatal cell models to investigate the hypothesis that decreased cAMP responsive element (CRE)-mediated gene transcription may reflect impaired energy metabolism. We found that reduced CRE-signaling in Hdh Q111 striatum, monitored by brain derived neurotrophic factor and phospho-CRE binding protein (CREB), predated inclusion formation. Furthermore, cAMP levels in Hdh Q111 striatum declined from an early age (10 weeks), and cAMP was significantly decreased in HD postmortem brain and lymphoblastoid cells, attesting to a chronic deficit in man. Reduced CRE-signaling in cultured STHdh Q111 striatal cells was associated with cytosolic CREB binding protein that mirrored diminished cAMP synthesis. Moreover, mutant cells exhibited mitochondrial respiratory chain impairment, evidenced by decreased ATP and ATP/ADP ratio, impaired MTT conversion and heightened sensitivity to 3-nitropropionic acid. Thus, our findings strongly suggest that impaired ATP synthesis and diminished cAMP levels amplify the early HD disease cascade by decreasing CRE-regulated gene transcription and altering energy dependent processes essential to neuronal cell survival.
Age-dependent decline of motor neocortex but not hippocampal performance in heterozygous BDNF mice correlates with a decrease of cortical PSD-95 but an increase of hippocampal TrkB levels
Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of s... more Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of several neurodegenerative disorders, including Huntington's disease. In view of these data and the involvement of huntingtin in intracellular trafficking, we examined the intracellular transport and release of Val66Val BDNF (Val-BDNF) and Val66Met BDNF (Met-BDNF) in transfected striatal knock-in cells expressing wild-type or mutant full-length huntingtin. Colocalization studies with specific markers for endoplasmic reticulum showed no differences between the Val-BDNF and Met-BDNF and were not modified by mutant huntingtin. However, post-Golgi trafficking was altered by mutant huntingtin dependent on the BDNF form. Thus, fluorescence recovery after photobleaching (FRAP) and inverse FRAP analysis showed retention of Met-BDNF in the Golgi apparatus with respect to Val-BDNF in wild-type cells. Strikingly, mutant huntingtin diminished post-Golgi trafficking of Val-BDNF, whereas Met-BDNF was not modified. Accordingly, a reduction in the number of transport vesicles was only observed in mutant huntingtin cells transfected with Val-BDNF but not Met-BDNF. Moreover, mutant huntingtin severely affected the KCl-evoked release of Val-BDNF, although it had little effect on Met-BDNF regulated release. The constitutive release of Val-BDNF or Met-BDNF in mutant cells was only slightly reduced. Interestingly, mutant huntingtin only perturbed post-Golgi trafficking of proteins that follow the regulated secretory pathway (epidermal growth factor receptor or atrial natriuretic factor), whereas it did not change those that follow the constitutive pathway (p75 NTR). We conclude that mutant huntingtin differently affects intracellular transport and release of Val-BDNF and Met-BDNF. In addition, our findings reveal a new role for huntingtin in the regulation of the post-Golgi trafficking of the regulated secretory pathway.
Huntington's disease (HD) is a neurodegenerative disease characterized by progressive motor, cogn... more Huntington's disease (HD) is a neurodegenerative disease characterized by progressive motor, cognitive and psychiatric deficits, associated with predominant loss of striatal neurons and caused by a polyglutamine expansion in the huntingtin protein. There is so far neither cure nor approved disease-slowing therapy for HD, though recent clinical studies have shown a beneficial long-term effect of pridopidine in patients with HD. The nature of this effect, purely symptomatic or, in addition, neuroprotective, is difficult to elucidate in clinical trials. Pridopidine and (−)-OSU6162 are members of a new family of compounds referred to as dopaminergic stabilizers, which normalize abnormal dopamine neurotransmission. We investigated the effects of (−)-OSU6162 on huntingtin knocked-in striatal neurons in culture. Control neurons had normal full-length huntingtin with 7 glutamines while "mutant" neurons had large expansions (Q = 111). We studied the dose-effect curves of (−)-OSU6162 on mitochondrial activity, LDH levels, necrosis and apoptosis in untreated Q7 and Q111 cells. In addition, we investigated the effects of (−)-OSU6162 on Q7 and Q111 neurons challenged with different neurotoxins such as sodium glutamate, H 2 O 2 , rotenone and 3nitropropionic acid (3NP). As we found prevention of toxicity of some of these neurotoxins, we investigated the putative neuroprotective mechanisms of action of (−)-OSU6162 measuring the effects of this dopaminergic stabilizer on expression and release of BDNF, the ratios of Bcl2/Bax proteins and of p-ERK/ERK, the levels of chaperones and GSH, and the effects of (−)-OSU6162 on dopamine uptake and release.
BDNF Induces Striatal-Enriched Protein Tyrosine Phosphatase 61 Degradation Through the Proteasome
Molecular Neurobiology, 2015
Brain-derived neurotrophic factor (BDNF) promotes synaptic strengthening through the regulation o... more Brain-derived neurotrophic factor (BDNF) promotes synaptic strengthening through the regulation of kinase and phosphatase activity. Conversely, striatal-enriched protein tyrosine phosphatase (STEP) opposes synaptic strengthening through inactivation or internalization of signaling molecules. Here, we investigated whether BDNF regulates STEP levels/activity. BDNF induced a reduction of STEP61 levels in primary cortical neurons, an effect that was prevented by inhibition of tyrosine kinases, phospholipase C gamma, or the ubiquitin-proteasome system (UPS). The levels of pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204), two STEP substrates, increased in BDNF-treated cultures, and blockade of the UPS prevented STEP61 degradation and reduced BDNF-induced GluN2B and ERK1/2 phosphorylation. Moreover, brief or sustained cell depolarization reduced STEP61 levels in cortical neurons by different mechanisms. BDNF also promoted UPS-mediated STEP61 degradation in cultured striatal and hippocampal neurons. In contrast, nerve growth factor and neurotrophin-3 had no effect on STEP61 levels. Our results thus indicate that STEP61 degradation is an important event in BDNF-mediated effects.
The epidermal growth factor receptor (EGFR) and Notch signaling pathways have antagonistic roles ... more The epidermal growth factor receptor (EGFR) and Notch signaling pathways have antagonistic roles during epidermal differentiation and carcinogenesis. The molecular mechanisms regulating the crosstalk between EGFR and Notch during epidermal transformation are largely unknown. We found enhanced EGFR-dependent signaling, proliferation and oncogenic transformation caused by loss of presenilins (PS), the catalytic components of γ-secretase that generates the Notch1 intracellular domain (NICD). The underlying mechanism for abnormal EGFR signaling in PSdeficient cells involves γ-secretase-independent transcriptional upregulation of the E3 ubiquitin ligase Fbw7. Fbw7α, which targets NICD for degradation, regulates positively EGFR by affecting a proteasome-dependent ubiquitination step essential for constitutive degradation and stability of EGFR. To investigate the pathological relevance of this findings in vivo, we generated a novel epidermal conditional PS-deficient (ePS cDKO) mouse by deleting both PS in keratinocytes of the basal layer of the epidermis. The ePS cDKO mice develop epidermal hyperplasia associated with enhanced expression of both EGFR and Fbw7 and reduced NICD levels in keratinocytes. These findings establish a novel role for PS on epidermal growth and transformation by reciprocally regulating the EGFR and Notch signaling pathways through Fbw7.
Altered neurotrophic support as a result of reduced brainderived neurotrophic factor (BDNF) expre... more Altered neurotrophic support as a result of reduced brainderived neurotrophic factor (BDNF) expression and trafficking has been revealed as a key factor in Huntington disease (HD) pathology. BDNF binds to and activates the tyrosine kinase receptor TrkB, leading to activation of intracellular signaling pathways to promote differentiation and cell survival. In order to design new neuroprotective therapies based on BDNF delivery, it is important to define whether BDNF-mediated TrkB signaling is affected in HD. Here, we demonstrate reduced TrkB-mediated Ras/MAPK/ERK1/2 signaling but unchanged phosphatidylinositol 3-kinase/Akt and phospholipase C␥ activation in knock-in HD striatal cells. Altered BDNF-mediated ERK1/2 activation in mutant huntingtin cells is associated with reduced expression of p52/p46 Shc docking proteins. Notably, reduced BDNF-induced ERK1/2 activation increases the sensitivity of mutant huntingtin striatal cells to oxidative damage. Accordingly, pharmacological activation of the MAPK pathway with PMA prevents cell death induced by oxidative stress. Taken together, our results suggest that in addition to reduced BDNF, diminished Ras/MAPK/ERK1/2 activation is involved in neurotrophic deficits associated with HD pathology. Therefore, pharmacological approaches aimed to directly modulate the MAPK/ ERK1/2 pathway may represent a valuable therapeutic strategy in HD.
Mitochondria-associated membranes (MAMs) are dynamic structures that communicate endoplasmic reti... more Mitochondria-associated membranes (MAMs) are dynamic structures that communicate endoplasmic reticulum (ER) and mitochondria allowing calcium transfer between these two organelles. Since calcium dysregulation is an important hallmark of several neurodegenerative diseases, disruption of MAMs has been speculated to contribute to pathological features associated with these neurodegenerative processes. In Huntington's disease (HD), mutant huntingtin induces the selective loss of medium spiny neurons within the striatum. The cause of this specific susceptibility remain unclear. However, defects on mitochondrial dynamics and bioenergetics have been proposed as critical contributors, causing accumulation of fragmented mitochondria and subsequent Ca 2+ homeostasis alterations. In the present work, we show that aberrant Drp1-mediated mitochondrial fragmentation within the striatum of HD mutant mice, forces mitochondria to place far away from the ER disrupting the ER-mitochondria association and therefore causing drawbacks in Ca 2+ efflux and an excessive production of mitochondria superoxide species. Accordingly, inhibition of Drp1 activity by Mdivi-1 treatment restored ERmitochondria contacts, mitochondria dysfunction and Ca 2+ homeostasis. In sum, our results give new insight on how defects on mitochondria dynamics may contribute to striatal vulnerability in HD and highlights MAMs dysfunction as an important factor involved in HD striatal pathology.
Pyk2 is a Ca-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in... more Pyk2 is a Ca-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but at 3 months. We crossed these mice with Pyk2 mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2 double mutant mice was not different from that of 5XFA...
{"__content__"=>"Early Downregulation of p75 by Genetic and Pharmacological Approaches Delays the Onset of Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice.", "sup"=>{"__content__"=>"NTR"}}
Molecular neurobiology, Jan 27, 2018
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin re... more Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 expression. Genetic normalization of p75 expression in KI mutant mice delayed the onset of motor deficits and striatal neuropath...
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, Jan 19, 2017
The dorsal striatum is a key node for many neurobiological processes such as motor activity, cogn... more The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically-modified animal models, together with biochemical and pharmacological approaches, we ...
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the ap... more Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2015
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still... more The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Huntington's disease features the loss of striatal neurons that stems from a disease process that... more Huntington's disease features the loss of striatal neurons that stems from a disease process that is initiated by mutant huntingtin. Early events in the disease cascade, which predate overt pathology in Hdh CAG knock-in mouse striatum, implicate enhanced N-methyl-D-aspartate (NMDA) receptor activation, with excitotoxity caused by aberrant Ca 2؉ influx. Here we demonstrate in precise genetic Huntington's disease mouse and striatal cell models that these early phenotypes are associated with activation of the Akt pro-survival signaling pathway. Elevated levels of activated Ser(P) 473-Akt are detected in extracts of Hdh Q111/Q111 striatum and cultured mutant STHdh Q111/Q111 striatal cells, compared with their wild type counterparts. Akt activation in mutant striatal cells is associated with increased Akt signaling via phosphorylation of GSK3 at Ser 9. Consequent decreased turnover of transcription co-factor -catenin leads to increased levels of -catenin target gene cyclin D1. Akt activation is phosphatidylinositol 3-kinase dependent, as demonstrated by increased levels of Ser(P) 241-PDK1 kinase and decreased Ser(P) 380-PTEN phosphatase. Moreover, Akt activation can be normally stimulated by treatment with insulin growth factor-1 and blocked by treatment with the phosphatidylinositol 3-kinase inhibitor LY294002. However, in contrast to wild type cells, Akt activation in mutant striatal cells can be blocked by the addition of the NMDA receptor antagonist MK-801. Akt activation in mutant striatal cells is Ca 2؉-dependent, because treatment with EGTA reduces levels of Ser(P) 473-Akt. Thus, consistent with excitotoxicity early in the disease process, activation of the Akt pro-survival pathway in mutant knock-in striatal cells predates overt pathology and reflects mitochondrial dysfunction and enhanced NMDA receptor signaling.
Defects in gene transcription and mitochondrial function have been implicated in the dominant dis... more Defects in gene transcription and mitochondrial function have been implicated in the dominant disease process that leads to the loss of striatal neurons in Huntington's disease (HD). Here we have used precise genetic HD mouse and striatal cell models to investigate the hypothesis that decreased cAMP responsive element (CRE)-mediated gene transcription may reflect impaired energy metabolism. We found that reduced CRE-signaling in Hdh Q111 striatum, monitored by brain derived neurotrophic factor and phospho-CRE binding protein (CREB), predated inclusion formation. Furthermore, cAMP levels in Hdh Q111 striatum declined from an early age (10 weeks), and cAMP was significantly decreased in HD postmortem brain and lymphoblastoid cells, attesting to a chronic deficit in man. Reduced CRE-signaling in cultured STHdh Q111 striatal cells was associated with cytosolic CREB binding protein that mirrored diminished cAMP synthesis. Moreover, mutant cells exhibited mitochondrial respiratory chain impairment, evidenced by decreased ATP and ATP/ADP ratio, impaired MTT conversion and heightened sensitivity to 3-nitropropionic acid. Thus, our findings strongly suggest that impaired ATP synthesis and diminished cAMP levels amplify the early HD disease cascade by decreasing CRE-regulated gene transcription and altering energy dependent processes essential to neuronal cell survival.
Age-dependent decline of motor neocortex but not hippocampal performance in heterozygous BDNF mice correlates with a decrease of cortical PSD-95 but an increase of hippocampal TrkB levels
Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of s... more Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of several neurodegenerative disorders, including Huntington's disease. In view of these data and the involvement of huntingtin in intracellular trafficking, we examined the intracellular transport and release of Val66Val BDNF (Val-BDNF) and Val66Met BDNF (Met-BDNF) in transfected striatal knock-in cells expressing wild-type or mutant full-length huntingtin. Colocalization studies with specific markers for endoplasmic reticulum showed no differences between the Val-BDNF and Met-BDNF and were not modified by mutant huntingtin. However, post-Golgi trafficking was altered by mutant huntingtin dependent on the BDNF form. Thus, fluorescence recovery after photobleaching (FRAP) and inverse FRAP analysis showed retention of Met-BDNF in the Golgi apparatus with respect to Val-BDNF in wild-type cells. Strikingly, mutant huntingtin diminished post-Golgi trafficking of Val-BDNF, whereas Met-BDNF was not modified. Accordingly, a reduction in the number of transport vesicles was only observed in mutant huntingtin cells transfected with Val-BDNF but not Met-BDNF. Moreover, mutant huntingtin severely affected the KCl-evoked release of Val-BDNF, although it had little effect on Met-BDNF regulated release. The constitutive release of Val-BDNF or Met-BDNF in mutant cells was only slightly reduced. Interestingly, mutant huntingtin only perturbed post-Golgi trafficking of proteins that follow the regulated secretory pathway (epidermal growth factor receptor or atrial natriuretic factor), whereas it did not change those that follow the constitutive pathway (p75 NTR). We conclude that mutant huntingtin differently affects intracellular transport and release of Val-BDNF and Met-BDNF. In addition, our findings reveal a new role for huntingtin in the regulation of the post-Golgi trafficking of the regulated secretory pathway.
Huntington's disease (HD) is a neurodegenerative disease characterized by progressive motor, cogn... more Huntington's disease (HD) is a neurodegenerative disease characterized by progressive motor, cognitive and psychiatric deficits, associated with predominant loss of striatal neurons and caused by a polyglutamine expansion in the huntingtin protein. There is so far neither cure nor approved disease-slowing therapy for HD, though recent clinical studies have shown a beneficial long-term effect of pridopidine in patients with HD. The nature of this effect, purely symptomatic or, in addition, neuroprotective, is difficult to elucidate in clinical trials. Pridopidine and (−)-OSU6162 are members of a new family of compounds referred to as dopaminergic stabilizers, which normalize abnormal dopamine neurotransmission. We investigated the effects of (−)-OSU6162 on huntingtin knocked-in striatal neurons in culture. Control neurons had normal full-length huntingtin with 7 glutamines while "mutant" neurons had large expansions (Q = 111). We studied the dose-effect curves of (−)-OSU6162 on mitochondrial activity, LDH levels, necrosis and apoptosis in untreated Q7 and Q111 cells. In addition, we investigated the effects of (−)-OSU6162 on Q7 and Q111 neurons challenged with different neurotoxins such as sodium glutamate, H 2 O 2 , rotenone and 3nitropropionic acid (3NP). As we found prevention of toxicity of some of these neurotoxins, we investigated the putative neuroprotective mechanisms of action of (−)-OSU6162 measuring the effects of this dopaminergic stabilizer on expression and release of BDNF, the ratios of Bcl2/Bax proteins and of p-ERK/ERK, the levels of chaperones and GSH, and the effects of (−)-OSU6162 on dopamine uptake and release.
BDNF Induces Striatal-Enriched Protein Tyrosine Phosphatase 61 Degradation Through the Proteasome
Molecular Neurobiology, 2015
Brain-derived neurotrophic factor (BDNF) promotes synaptic strengthening through the regulation o... more Brain-derived neurotrophic factor (BDNF) promotes synaptic strengthening through the regulation of kinase and phosphatase activity. Conversely, striatal-enriched protein tyrosine phosphatase (STEP) opposes synaptic strengthening through inactivation or internalization of signaling molecules. Here, we investigated whether BDNF regulates STEP levels/activity. BDNF induced a reduction of STEP61 levels in primary cortical neurons, an effect that was prevented by inhibition of tyrosine kinases, phospholipase C gamma, or the ubiquitin-proteasome system (UPS). The levels of pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204), two STEP substrates, increased in BDNF-treated cultures, and blockade of the UPS prevented STEP61 degradation and reduced BDNF-induced GluN2B and ERK1/2 phosphorylation. Moreover, brief or sustained cell depolarization reduced STEP61 levels in cortical neurons by different mechanisms. BDNF also promoted UPS-mediated STEP61 degradation in cultured striatal and hippocampal neurons. In contrast, nerve growth factor and neurotrophin-3 had no effect on STEP61 levels. Our results thus indicate that STEP61 degradation is an important event in BDNF-mediated effects.
The epidermal growth factor receptor (EGFR) and Notch signaling pathways have antagonistic roles ... more The epidermal growth factor receptor (EGFR) and Notch signaling pathways have antagonistic roles during epidermal differentiation and carcinogenesis. The molecular mechanisms regulating the crosstalk between EGFR and Notch during epidermal transformation are largely unknown. We found enhanced EGFR-dependent signaling, proliferation and oncogenic transformation caused by loss of presenilins (PS), the catalytic components of γ-secretase that generates the Notch1 intracellular domain (NICD). The underlying mechanism for abnormal EGFR signaling in PSdeficient cells involves γ-secretase-independent transcriptional upregulation of the E3 ubiquitin ligase Fbw7. Fbw7α, which targets NICD for degradation, regulates positively EGFR by affecting a proteasome-dependent ubiquitination step essential for constitutive degradation and stability of EGFR. To investigate the pathological relevance of this findings in vivo, we generated a novel epidermal conditional PS-deficient (ePS cDKO) mouse by deleting both PS in keratinocytes of the basal layer of the epidermis. The ePS cDKO mice develop epidermal hyperplasia associated with enhanced expression of both EGFR and Fbw7 and reduced NICD levels in keratinocytes. These findings establish a novel role for PS on epidermal growth and transformation by reciprocally regulating the EGFR and Notch signaling pathways through Fbw7.
Uploads
Papers by silvia gines