Glucose constitutes a major fuel for the heart, and high glucose uptake during fetal development ... more Glucose constitutes a major fuel for the heart, and high glucose uptake during fetal development is coincident with the highest level of expression of the glucose transporter GLUT-1 during life. We have previously reported that GLUT-1 is repressed perinatally in rat heart, and GLUT-4, which shows a low level of expression in the fetal stage, becomes the main glucose transporter in the adult. Here, we show that the perinatal expression of GLUT-1 and GLUT-4 glucose transporters in heart is controlled directly at the level of gene transcription. Transient transfection assays show that the ؊99/؊33 fragment of the GLUT-1 gene is sufficient to drive transcriptional activity in rat neonatal cardiomyocytes. Electrophoretic mobility shift assays demonstrate that the transcription factor Sp1, a trans-activator of GLUT-1 promoter, binds to the ؊102/؊82 region of GLUT-1 promoter during the fetal state but not during adulthood. Mutation of the Sp1 site in this region demonstrates that Sp1 is essential for maintaining a high transcriptional activity in cardiac myocytes. Sp1 is markedly down-regulated both in heart and in skeletal muscle during neonatal life, suggesting an active role for Sp1 in the regulation of GLUT-1 transcription. In all, these results indicate that the expression of GLUT-1 and GLUT-4 in heart during perinatal development is largely controlled at a transcriptional level by mechanisms that might be related to hyperplasia and that are independent from the signals that trigger cell hypertrophy in the developing heart. Furthermore, our results provide the first functional insight into the mechanisms regulating muscle GLUT-1 gene expression in a live animal.
A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the dis... more A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundaries have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for approximately 44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding ...
We have recently isolated a renal cDNA clone (rBAT) that induces amino acid transport in oocytes ... more We have recently isolated a renal cDNA clone (rBAT) that induces amino acid transport in oocytes either as a component or as a specific activator of a system bo.+ -like transporter. (Bertran, J.
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in ... more Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both components of Na+/alanine cotransport (systems A and ASC) were inhibited. Exposure of vesicles to p-bromophenacyl bromide and methyl p-nitrobenzenesulfonate, which share with DEPC reactivity against histidine residues, also led to inhibition of alanine transport through systems A and ASC. The presence of Na+ (100 mM NaCl) and L-alanine (10 mM) during exposure to vesicles to DEPC protected against inactivation of system A (but not system ASC) transport activity. This protective effect was specific and required the presence of L-alanine since the presence of L-phenylalanine alone (10 mM) or L-phenylalanine plus Na+ (100 mM NaCl) did not cause any detectable protection. This overall pattern of protection is opposite to that previously found against specific sulfhydryl reagents (i.e. N-ethylmaleimide), where protection of system ASC was nearly maximal. The pH profile for DEPC-dependent inhibition of system A transport activity suggests modification of amino acid residue(s) with a pKr of approximately 7, most likely histidine(s), in close parallel with the pH dependence of system A transport activity. Our results suggest the presence of critical histidine residues on the system A carrier that may be responsible for the pH dependence of system A transport activity.
The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-r... more The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-receptor (AR) agonist, is well documented in rat adipocytes. Since it has been described that rat adipocytes possess not only beta 1- and beta 2- but also beta 3-ARs, the influence of various subtype-selective beta-AR agonists and antagonists on 2-deoxyglucose (2-DG) transport was assessed in order to characterize the beta-AR subtype involved in the adrenergic counter-regulation of the insulin effect. The stimulation of 2-DG transport by insulin was counteracted, in a dose-dependent manner, by all the beta-AR agonists tested, and the magnitude of the inhibition followed the rank order: BRL 37344 > isoprenaline = noradrenaline >> dobutamine = procaterol. The same rank order of potency was obtained for lipolysis activation. This is not in accordance with the pharmacological definition of a beta 1- or a beta 2-adrenergic effect, but agrees with the pharmacological pattern of a beta ...
Caveolin is believed to play an important role in sorting processes, vesicular trafficking, trans... more Caveolin is believed to play an important role in sorting processes, vesicular trafficking, transmembrane signaling, and molecular transport across membranes. In this study we have evaluated the expression and distribution of caveolin in skeletal muscle and its interaction with GLUT4 glucose carriers. Caveolin was expressed to substantial levels in muscle and its expression was regulated in muscle; aging and high fat diet enhanced caveolin expression in skeletal muscle and inversely, myogenesis down-regulated caveolin in L6E9 cells. Under fasting conditions, most of caveolin was found in intracellular membranes and the caveolin present in the cell surface was found in both sarcolemma and Ttubules. Insulin administration led to a redistribution of caveolin from intracellular high density membrane fractions to intracellular lighter density fractions and to the cell surface; this pattern of insulin-induced redistribution was different to what was shown by GLUT4. These results suggests that caveolin is a component of an insulin-regulated machinery of vesicular transport in muscle. Quantitative immunoisolation of GLUT4 vesicles obtained from different intracellular GLUT4 populations revealed the absence of caveolin which substantiates the lack of colocalization of intracellular GLUT4 and caveolin. This indicates that caveolin is not involved in intracellular GLUT4 trafficking in skeletal muscle.
Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine a... more Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J.
Using isolated rat cardiomyocytes we have examined: 1) the effect of insulin on the cellular dist... more Using isolated rat cardiomyocytes we have examined: 1) the effect of insulin on the cellular distribution of glucose transporter 4 (GLUT4) and GLUT1, 2) the total amount of these transporters, and 3) the co-localization of GLUT4, GLUT1, and secretory carrier membrane proteins (SCAMPs) in intracellular membranes. Insulin induced 5.7-and 2.7-fold increases in GLUT4 and GLUT1 at the cell surface, respectively, as determined by the nonpermeant photoaffinity label [ 3 H]2-N-[4(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-yloxy)propyl-2amine. The total amount of GLUT1, as determined by quantitative Western blot analysis of cell homogenates, was found to represent a substantial fraction (ϳ30%) of the total glucose transporter content. Intracellular GLUT4-containing vesicles were immunoisolated from low density microsomes by using monoclonal anti-GLUT4 (1F8) or anti-SCAMP antibodies (3F8) coupled to either agarose or acrylamide. With these different immunoisolation conditions two GLUT4 membrane pools were found in nonstimulated cells: one pool with a high proportion of GLUT4 and a low content in GLUT1 and SCAMP 39 (pool 1) and a second GLUT4 pool with a high content of GLUT1 and SCAMP 39 (pool 2). The existence of pool 1 was confirmed by immunotitration of intracellular GLUT4 membranes with 1F8-acrylamide. Acute insulin treatment caused the depletion of GLUT4 in both pools and of GLUT1 and SCAMP 39 in pool 2. In conclusion: 1) GLUT4 is the major glucose transporter to be recruited to the surface of cardiomyocytes in response to insulin; 2) these cells express a high level of GLUT1; and 3) intracellular GLUT4-containing vesicles consist of at least two populations, which is compatible with recently proposed models of GLUT4 trafficking in adipocytes.
Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin,... more Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin, glucose transport into cardiomyocytes limits the rate of glucose utilization and therefore it is important to understand the regulation of glucose transporters. Cardiac muscle cells express 2 distinct glucose transporters, GLUT4 and GLUT1; although GLUT4 is quantitatively the more important glucose transporter expressed in heart, GLUT1 is also expressed at a substantial level. In isolated rat cardiomyocytes, insulin acutely stimulates glucose transport and translocates both GLUT4 and GLUT1 from an intracellular site to the cell surface. Recent evidence indicates the existence of at least 2 distinct intracellular membrane populations enriched in GLUT4 with a different protein composition. Elucidation of the intracellular location of these 2 GLUT4 vesicle pools in cardiac myocytes, their role in GLUT4 trafficking, and their relation to insulin-induced GLUT4 translocation needs to be addressed.
The cDNAs of mammalian amino acid transporters already identified could be grouped into four fami... more The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary ...
1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and whit... more 1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content, GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In con...
A major objective for the understanding of muscle glucose disposal is the elucidation of the intr... more A major objective for the understanding of muscle glucose disposal is the elucidation of the intracellular trafficking pathway of GLUT4 glucose carriers in the muscle fiber. In this report, we provide functional and biochemical characterization of two distinct intracellular GLUT4 vesicle pools ...
To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) d... more To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) decavanadate (B6V10), previously shown to exert antidiabetic effects in rodent models, such as lowering free fatty acids (FFA) and glucose circulating levels. Adipose tissue (AT) samples were obtained after informed consent from overweight women undergoing plastic surgery. Comparison of the effects of B6V10 and reference antilipolytic agents (insulin, benzylamine, vanadate) on the lipolytic activity was performed on adipocytes freshly isolated from rat, mouse and human AT. Glycerol release was measured using colorimetric assay as an index of lipolytic activity. The influence of B6V10 and reference agents on glucose transport into human fat cells was determined using the radiolabelled 2-deoxyglucose uptake assay. In all the species studied, B6V10 exhibited a dose-dependent inhibition of adipocyte lipolysis when triglyceride breakdown was moderately enhanced by β-adrenergic receptor stimula...
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and ... more Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).
Glucose constitutes a major fuel for the heart, and high glucose uptake during fetal development ... more Glucose constitutes a major fuel for the heart, and high glucose uptake during fetal development is coincident with the highest level of expression of the glucose transporter GLUT-1 during life. We have previously reported that GLUT-1 is repressed perinatally in rat heart, and GLUT-4, which shows a low level of expression in the fetal stage, becomes the main glucose transporter in the adult. Here, we show that the perinatal expression of GLUT-1 and GLUT-4 glucose transporters in heart is controlled directly at the level of gene transcription. Transient transfection assays show that the ؊99/؊33 fragment of the GLUT-1 gene is sufficient to drive transcriptional activity in rat neonatal cardiomyocytes. Electrophoretic mobility shift assays demonstrate that the transcription factor Sp1, a trans-activator of GLUT-1 promoter, binds to the ؊102/؊82 region of GLUT-1 promoter during the fetal state but not during adulthood. Mutation of the Sp1 site in this region demonstrates that Sp1 is essential for maintaining a high transcriptional activity in cardiac myocytes. Sp1 is markedly down-regulated both in heart and in skeletal muscle during neonatal life, suggesting an active role for Sp1 in the regulation of GLUT-1 transcription. In all, these results indicate that the expression of GLUT-1 and GLUT-4 in heart during perinatal development is largely controlled at a transcriptional level by mechanisms that might be related to hyperplasia and that are independent from the signals that trigger cell hypertrophy in the developing heart. Furthermore, our results provide the first functional insight into the mechanisms regulating muscle GLUT-1 gene expression in a live animal.
A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the dis... more A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundaries have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for approximately 44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding ...
We have recently isolated a renal cDNA clone (rBAT) that induces amino acid transport in oocytes ... more We have recently isolated a renal cDNA clone (rBAT) that induces amino acid transport in oocytes either as a component or as a specific activator of a system bo.+ -like transporter. (Bertran, J.
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in ... more Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both components of Na+/alanine cotransport (systems A and ASC) were inhibited. Exposure of vesicles to p-bromophenacyl bromide and methyl p-nitrobenzenesulfonate, which share with DEPC reactivity against histidine residues, also led to inhibition of alanine transport through systems A and ASC. The presence of Na+ (100 mM NaCl) and L-alanine (10 mM) during exposure to vesicles to DEPC protected against inactivation of system A (but not system ASC) transport activity. This protective effect was specific and required the presence of L-alanine since the presence of L-phenylalanine alone (10 mM) or L-phenylalanine plus Na+ (100 mM NaCl) did not cause any detectable protection. This overall pattern of protection is opposite to that previously found against specific sulfhydryl reagents (i.e. N-ethylmaleimide), where protection of system ASC was nearly maximal. The pH profile for DEPC-dependent inhibition of system A transport activity suggests modification of amino acid residue(s) with a pKr of approximately 7, most likely histidine(s), in close parallel with the pH dependence of system A transport activity. Our results suggest the presence of critical histidine residues on the system A carrier that may be responsible for the pH dependence of system A transport activity.
The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-r... more The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-receptor (AR) agonist, is well documented in rat adipocytes. Since it has been described that rat adipocytes possess not only beta 1- and beta 2- but also beta 3-ARs, the influence of various subtype-selective beta-AR agonists and antagonists on 2-deoxyglucose (2-DG) transport was assessed in order to characterize the beta-AR subtype involved in the adrenergic counter-regulation of the insulin effect. The stimulation of 2-DG transport by insulin was counteracted, in a dose-dependent manner, by all the beta-AR agonists tested, and the magnitude of the inhibition followed the rank order: BRL 37344 > isoprenaline = noradrenaline >> dobutamine = procaterol. The same rank order of potency was obtained for lipolysis activation. This is not in accordance with the pharmacological definition of a beta 1- or a beta 2-adrenergic effect, but agrees with the pharmacological pattern of a beta ...
Caveolin is believed to play an important role in sorting processes, vesicular trafficking, trans... more Caveolin is believed to play an important role in sorting processes, vesicular trafficking, transmembrane signaling, and molecular transport across membranes. In this study we have evaluated the expression and distribution of caveolin in skeletal muscle and its interaction with GLUT4 glucose carriers. Caveolin was expressed to substantial levels in muscle and its expression was regulated in muscle; aging and high fat diet enhanced caveolin expression in skeletal muscle and inversely, myogenesis down-regulated caveolin in L6E9 cells. Under fasting conditions, most of caveolin was found in intracellular membranes and the caveolin present in the cell surface was found in both sarcolemma and Ttubules. Insulin administration led to a redistribution of caveolin from intracellular high density membrane fractions to intracellular lighter density fractions and to the cell surface; this pattern of insulin-induced redistribution was different to what was shown by GLUT4. These results suggests that caveolin is a component of an insulin-regulated machinery of vesicular transport in muscle. Quantitative immunoisolation of GLUT4 vesicles obtained from different intracellular GLUT4 populations revealed the absence of caveolin which substantiates the lack of colocalization of intracellular GLUT4 and caveolin. This indicates that caveolin is not involved in intracellular GLUT4 trafficking in skeletal muscle.
Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine a... more Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J.
Using isolated rat cardiomyocytes we have examined: 1) the effect of insulin on the cellular dist... more Using isolated rat cardiomyocytes we have examined: 1) the effect of insulin on the cellular distribution of glucose transporter 4 (GLUT4) and GLUT1, 2) the total amount of these transporters, and 3) the co-localization of GLUT4, GLUT1, and secretory carrier membrane proteins (SCAMPs) in intracellular membranes. Insulin induced 5.7-and 2.7-fold increases in GLUT4 and GLUT1 at the cell surface, respectively, as determined by the nonpermeant photoaffinity label [ 3 H]2-N-[4(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-yloxy)propyl-2amine. The total amount of GLUT1, as determined by quantitative Western blot analysis of cell homogenates, was found to represent a substantial fraction (ϳ30%) of the total glucose transporter content. Intracellular GLUT4-containing vesicles were immunoisolated from low density microsomes by using monoclonal anti-GLUT4 (1F8) or anti-SCAMP antibodies (3F8) coupled to either agarose or acrylamide. With these different immunoisolation conditions two GLUT4 membrane pools were found in nonstimulated cells: one pool with a high proportion of GLUT4 and a low content in GLUT1 and SCAMP 39 (pool 1) and a second GLUT4 pool with a high content of GLUT1 and SCAMP 39 (pool 2). The existence of pool 1 was confirmed by immunotitration of intracellular GLUT4 membranes with 1F8-acrylamide. Acute insulin treatment caused the depletion of GLUT4 in both pools and of GLUT1 and SCAMP 39 in pool 2. In conclusion: 1) GLUT4 is the major glucose transporter to be recruited to the surface of cardiomyocytes in response to insulin; 2) these cells express a high level of GLUT1; and 3) intracellular GLUT4-containing vesicles consist of at least two populations, which is compatible with recently proposed models of GLUT4 trafficking in adipocytes.
Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin,... more Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin, glucose transport into cardiomyocytes limits the rate of glucose utilization and therefore it is important to understand the regulation of glucose transporters. Cardiac muscle cells express 2 distinct glucose transporters, GLUT4 and GLUT1; although GLUT4 is quantitatively the more important glucose transporter expressed in heart, GLUT1 is also expressed at a substantial level. In isolated rat cardiomyocytes, insulin acutely stimulates glucose transport and translocates both GLUT4 and GLUT1 from an intracellular site to the cell surface. Recent evidence indicates the existence of at least 2 distinct intracellular membrane populations enriched in GLUT4 with a different protein composition. Elucidation of the intracellular location of these 2 GLUT4 vesicle pools in cardiac myocytes, their role in GLUT4 trafficking, and their relation to insulin-induced GLUT4 translocation needs to be addressed.
The cDNAs of mammalian amino acid transporters already identified could be grouped into four fami... more The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary ...
1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and whit... more 1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content, GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In con...
A major objective for the understanding of muscle glucose disposal is the elucidation of the intr... more A major objective for the understanding of muscle glucose disposal is the elucidation of the intracellular trafficking pathway of GLUT4 glucose carriers in the muscle fiber. In this report, we provide functional and biochemical characterization of two distinct intracellular GLUT4 vesicle pools ...
To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) d... more To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) decavanadate (B6V10), previously shown to exert antidiabetic effects in rodent models, such as lowering free fatty acids (FFA) and glucose circulating levels. Adipose tissue (AT) samples were obtained after informed consent from overweight women undergoing plastic surgery. Comparison of the effects of B6V10 and reference antilipolytic agents (insulin, benzylamine, vanadate) on the lipolytic activity was performed on adipocytes freshly isolated from rat, mouse and human AT. Glycerol release was measured using colorimetric assay as an index of lipolytic activity. The influence of B6V10 and reference agents on glucose transport into human fat cells was determined using the radiolabelled 2-deoxyglucose uptake assay. In all the species studied, B6V10 exhibited a dose-dependent inhibition of adipocyte lipolysis when triglyceride breakdown was moderately enhanced by β-adrenergic receptor stimula...
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and ... more Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).
Uploads
Papers by Xavier Testar