Papers by Laurence Dubrez

Cell death & disease, May 25, 2017
The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in respon... more The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitinati...
Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stress... more Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed.
[IAP and Rho finally connected]
Towards the elaboration of new gold-based optical theranostics
Dalton Trans., 2015
Four new red BODIPY-gold(i) theranostic compounds were synthesized. Some of them were vectorized ... more Four new red BODIPY-gold(i) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.

médecine/sciences, 2012
> La fonction des IAP (inhibitors of apoptosis proteins) a longtemps été restreinte à une inhibit... more > La fonction des IAP (inhibitors of apoptosis proteins) a longtemps été restreinte à une inhibition de l'apoptose, en raison de leur capacité à lier directement certaines caspases. La mise en évidence d'altérations de l'expression de ces protéines dans des échantillons tumoraux en a fait des cibles privilégiées pour les traitements anticancéreux. De nombreuses molécules ont été développées dans le but d'inhiber la capacité de liaison des IAP avec les caspases. De façon inattendue, ces molécules altèrent considérablement la signalisation NF-B. Dans cette revue, nous discuterons des travaux récents montrant un rôle central de cIAP1, cIAP2 et XIAP dans la régulation des voies de signalisation conduisant à une activation de NF-B. < issus d'organismes invalidés pour ces protéines ont permis de mettre en évidence un rôle important des IAP, principalement cIAP1, cIAP2 et XIAP, dans la signalisation cellulaire conduisant à l'activation des facteurs de transcription NF-B (nuclear factor-kB).

cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation
Oncogene, 2013
Tumour necrosis factor-α (TNF) is a cytokine endowed with multiple functions, depending on the ce... more Tumour necrosis factor-α (TNF) is a cytokine endowed with multiple functions, depending on the cellular and environmental context. TNF receptor engagement induces the formation of a multimolecular complex including the TNFR-associated factor TRAF2, the receptor-interaction protein kinase RIP1 and the cellular inhibitor of apoptosis cIAP1, the latter being essential for NF-κB activation. Here, we show that cIAP1 also regulates TNF-induced actin cytoskeleton reorganization through a cdc42-dependent, NF-κB-independent pathway. Deletion of cIAP1 prevents TNF-induced filopodia and cdc42 activation. The expression of cIAP1 or its E3-ubiquitin ligase-defective mutant restores the ability of cIAP1(-/-) MEFs to produce filopodia, whereas a cIAP1 mutant unable to bind TRAF2 does not. Accordingly, the silencing of TRAF2 inhibits TNF-mediated filopodia formation, whereas silencing of RIP1 does not. cIAP1 directly binds cdc42 and promotes its RhoGDIα-mediated stabilization. TNF decreases cIAP1-cdc42 interaction, suggesting that TNF-induced recruitment of cIAP1/TRAF2 to the receptor releases cdc42, which in turn triggers actin remodeling. cIAP1 also regulates cdc42 activation in response to EGF and HRas-V12 expression. A downregulation of cIAP1 altered the cell polarization, the cell adhesion to endothelial cells and cell intercalation, which are cdc42-dependent processes. Finally, we demonstrated that the deletion of cIAP1 regulated the HRas-V12-mediated transformation process, including anchorage-dependent cell growth, tumour growth in a xenograft model and the development of experimental metastasis in the lung.

Oncogene, 1998
Caspases are aspartate-speci®c cysteine proteases that play a pivotal role in drug-induced cell d... more Caspases are aspartate-speci®c cysteine proteases that play a pivotal role in drug-induced cell death. We designed RT ± PCR assays to analyse the expression of CASP-3, CASP-4, CASP-6 and the long and short isoforms of CASP-2 genes in human cells. These genes heterogeneously coexpress in leukemic cell lines and bone marrow samples from patients with de novo acute myelogenous leukemia at diagnosis. Treatment of U937 and HL60 leukemic cells and HT29 colon carcinoma cells with the topoisomerase II inhibitor etoposide upregulates CASP-2 and CASP-3 genes in these cells before inducing their apoptosis. This eect of etoposide is not observed in K562 cells and bcl-2-transfected U937 cells which are less sensitive to drug-induced apoptosis. Nuclear run-on experiments demonstrate that etoposide increases CASP gene transcription in U937 cells, an eect that is prevented by Bcl-2 overexpression. Upregulation of CASP genes is associated with an enhanced synthesis of related procaspases that precedes the appearance of apoptosis markers including caspase-3 activation, poly(ADP-ribose) polymerase cleavage and internucleosomal DNA fragmentation. These results suggest that the ability of tumor cells to upregulate CASP-2 and CASP-3 genes in response to cytotoxic drugs could be predictive of their sensitivity to druginduced apoptosis.

BCR-ABL Fails to Inhibit Apoptosis in U937 Myelomonocytic Cells Expressing a Carboxyl-Terminal Truncated Stat5
Leukemia & Lymphoma, 2001
Recent experimental data suggest that one of the major effects of BCR-ABL gene expression in hema... more Recent experimental data suggest that one of the major effects of BCR-ABL gene expression in hematopoietic cells is the inhibition of apoptosis. Although the exact mechanisms of this phenomenon are not clear, it is thought to be related to the fact that BCR-ABL induces several signalling pathways also activated by growth factors. In order to determine the anti-apoptotic role of BCR-ABL in a hematopoietic cell line and to by-pass the influence of cytokine-dependence, BCR-ABL gene was expressed in the autonomously growing myelomonocytic U937 cell line using retroviral vectors. There was no resistance to apoptosis induced by either serum deprivation or different doses of etoposide in any U937 clones expressing BCR-ABL protein. In addition to serum deprivation and etoposide, BCR-ABL-expressing clones were not protected from apoptosis induced by TNF, ceramide-C2 and FAS-cross-linking. BCL2 expression was absent in U937 cells and BAX levels were identical between Neo and BCR-ABL clones. To further investigate the mechanisms of this phenomenon, band-shift assays were performed to detect activation of STAT molecules. No constitutive activation of STATs was detected in either NeoR or BCR-ABL-U937 cells, although both IFN-gamma and GM-CSF activated STAT1 and STAT5, respectively, with similar kinetics in both NeoR and BCR-ABL-U937 cells. In addition, the GM-CSF-induced-STAT5 activation was found to be weakened in all clones expressing BCR-ABL. In both control NeoR and BCR-ABL-transfected clones, band-shift assays revealed the presence of an abnormal truncated STAT5 recognized only by an anti-N-terminal but not by an anti-C-Terminal STAT5 antibody. These findings suggest a possible link between the absence of anti-apoptotic potential of BCR-ABL and abnormalities of the STAT5 pathway, including, absence of constitutive activation of STAT5, inhibition of GM-CSF-induced STAT5 activation and expression of a carboxyl-terminal-truncated STAT5.

Caffeine Sensitizes Human H358 Cell Line to p53-mediated Apoptosis by Inducing Mitochondrial Translocation and Conformational Change of BAX Protein
Journal of Biological Chemistry, 2001
The mechanisms involved in p53-mediated cell death remain controversial. In the present study, we... more The mechanisms involved in p53-mediated cell death remain controversial. In the present study, we investigated this cell death pathway by stably transfecting the p53-null H358 cell line with a tetracycline-dependent wild type p53-expressing vector. Restoration of p53 triggered a G(2)/M cell cycle arrest and enhanced BAX protein expression, without inducing apoptosis or potentiating the cytotoxic effect of etoposide, vincristine, and cis-platinum. Accordingly, overexpression of BAX in H358 cells, through stable transfection of a tetracycline-regulated expression vector, did not induce cell death. Interestingly, the methylxanthine caffeine (4 mm) promoted the translocation of BAX from the cytosol to the mitochondria. In the setting of an overexpression of BAX, caffeine induced a conformational change of the protein and apoptosis. The consequences of caffeine were independent of its cell cycle-related activities. All together, caffeine synergizes with p53 for inducing cell death through a cell cycle-independent mechanism, involving mitochondrial translocation and conformational change of BAX protein.
Journal of Biological Chemistry, 2012
Background: How the adaptive ER stress response causes cell death remains enigmatic. Results: cIA... more Background: How the adaptive ER stress response causes cell death remains enigmatic. Results: cIAP1 prevents ER stress-mediated apoptosis in pancreatic !-cells by acting as an E3 ligase inducing CHOP ubiquitination and degradation. Conclusion: cIAP1 is a key determinative factor for !-cell survival under ER stress. Significance: The findings provide a new insight into the mechanistic determination of cell fate following ER stress response.

Cellular pharmacology of azatoxins (topoisomerase-II and tubulin inhibitors) in P-glycoprotein-positive and -negative cell lines
International Journal of Cancer, 1995
Azatoxin (NSC 640737), a synthetic molecule, was rationally designed as a topoisomerase-II inhibi... more Azatoxin (NSC 640737), a synthetic molecule, was rationally designed as a topoisomerase-II inhibitor and was shown to be a potent cytotoxic agent that inhibits both tubulin and topoisomerase II. A structure-activity relationship study allowed to select 3 derivatives that inhibit either tubulin (methylazatoxin) only or topoisomerase II (fluoroanilinoazatoxin and nitroanilino-azatoxin) in MTT assays performed on K562 and K562/ADM cells; the latter, expressing P-glycoprotein, indicated cross-resistance of K562/ADM cells to all 4 compounds. DNA double-strand breaks induced by the 3 azatoxins that inhibit topoisomerase II in vitro were decreased in K562/ADM as compared with K562 cells. Nitroanilino-azatoxin was the only compound for which resistance and reduced DNA damage observed in K562/ADM cells was partially reversed by verapamil, suggesting that nitroanilinoazatoxin was a substrate for P-glycoprotein. These results were confirmed by testing the cytotoxic activity of azatoxins on P-glycoprotein-expressing rat colon-carcinoma DHDK12/TRb cells in the absence and the presence of verapamil. Cell-cycle and mitotic-index studies indicated that azatoxin- and methyl-azatoxin-induced M-phase arrest was less in K562/ADM than in K562 cells. The G2 block induced by fluoro- and nitroanilinoazatoxins was delayed in K562/ADM cells. Verapamil increased cell-cycle inhibition induced by nitroanilinoazatoxin in K562/ADM cells without modifying cell-cycle effects of fluoroanilinoazatoxin. These results (i) are consistent with the specific inhibition of topoisomerase II or tubulin by azatoxin derivatives in cells; (ii) indicate that the nitro group of nitroanilinoazatoxin allows recognition and efflux by the P-glycoprotein; and (iii) suggest that cross-resistance of K562/ADM cells to other azatoxin derivatives is not mediated by P-glycoprotein.
European Respiratory Journal, 1996
Three steps can be distinguished in the pathway that leads to cell death.

Resveratrol-induced Apoptosis Is Associated with Fas Redistribution in the Rafts and the Formation of a Death-inducing Signaling Complex in Colon Cancer Cells
Journal of Biological Chemistry, 2003
Resveratrol, a polyphenol found in grape skin and various other food products, may function as a ... more Resveratrol, a polyphenol found in grape skin and various other food products, may function as a cancer chemopreventive agent for colon and other malignant tumors and possesses a chemotherapeutic potential through its ability to trigger apoptosis in tumor cells. The present study analyses the molecular mechanisms of resveratrol-induced apoptosis in colon cancer cells, with special attention to the role of the death receptor Fas in this pathway. We show that, in the 10-100 microm range of concentrations, resveratrol activates various caspases and triggers apoptosis in SW480 human colon cancer cells. Caspase activation is associated with accumulation of the pro-apoptotic proteins Bax and Bak that undergo conformational changes and relocalization to the mitochondria. Resveratrol does not modulate the expression of Fas and Fas-ligand (FasL) at the surface of cancer cells, and inhibition of the Fas/FasL interaction does not influence the apoptotic response to the molecule. Resveratrol induces the clustering of Fas and its redistribution in cholesterol and sphingolipid-rich fractions of SW480 cells, together with FADD and procaspase-8. This redistribution is associated with the formation of a death-inducing signaling complex (DISC). Transient transfection of either a dominant-negative mutant of FADD, E8, or MC159 viral proteins that interfere with the DISC function, decreases the apoptotic response of SW480 cells to resveratrol and partially prevents resveratrol-induced Bax and Bak conformational changes. Altogether, these results indicate that the ability of resveratrol to induce the redistribution of Fas receptor in membrane rafts may contribute to the molecule&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s ability to trigger apoptosis in colon cancer cells.
Uploads
Papers by Laurence Dubrez