Traumatic brain injury (TBI) can be caused by accidents and often leads to permanent health issue... more Traumatic brain injury (TBI) can be caused by accidents and often leads to permanent health issues or even death. Brain injury criteria are used for assessing the probability of TBI, if a certain mechanical load is applied. The currently used injury criteria in the automotive industry are based on global head kinematics. New methods, based on finite element modeling, use brain injury criteria at lower scale levels, e.g., tissue-based injury criteria. However, most current computational head models lack the anatomical details of the cerebrum. To investigate the influence of the morphologic heterogeneities of the cerebral cortex, a numerical model of a representative part of the cerebral cortex with a detailed geometry has been developed. Several different geometries containing gyri and sulci have been developed for this model. Also, a homogeneous geometry has been made to analyze the relative importance of the heterogeneities. The loading conditions are based on a computational head model simulation. The results of this model indicate that the heterogeneities have an influence on the equivalent stress. The maximum equivalent stress in the heterogeneous models is increased by a factor of about 1.3-1.9 with respect to the homogeneous model, whereas the mean equivalent stress is increased by at most 10%. This implies that tissue-based injury criteria may not be accurately applied to most computational head models used nowadays, which do not account for sulci and gyri.
Multiple length scales are involved in the development of traumatic brain injury, where the globa... more Multiple length scales are involved in the development of traumatic brain injury, where the global mechanics of the head level are responsible for local physiological impairment of brain cells. In this study, a relation between the mechanical state at the tissue level and the cellular level is established. A model has been developed that is based on pathological observations of
The length scales involved in the development of diffuse axonal injury typically range from the h... more The length scales involved in the development of diffuse axonal injury typically range from the head level (i.e., mechanical loading) to the cellular level. The parts of the brain that are vulnerable to this type of injury are mainly the brainstem and the corpus callosum, which are regions with highly anisotropically oriented axons. Within these parts, discrete axonal injuries occur mainly where the axons have to deviate from their main course due to the presence of an inclusion. The aim of this study is to predict axonal strains as a result of a mechanical load at the macroscopic head level. For this, a multi-scale finite element approach is adopted, in which a macro-level head model and a micro-level critical volume element are coupled. The results show that the axonal strains cannot be trivially correlated to the tissue strain without taking into account the axonal orientations, which indicates that the heterogeneities at the cellular level play an important role in brain injury and reliable predictions thereof. In addition to the multi-scale approach, it is shown that a novel anisotropic equivalent strain measure can be used to assess these micro-scale effects from head-level simulations only.
a b s t r a c t Traumatic Brain Injury (TBI) occurs when a mechanical insult produces damage to t... more a b s t r a c t Traumatic Brain Injury (TBI) occurs when a mechanical insult produces damage to the brain and disrupts its normal function. Numerical head models are often used as tools to analyze TBIs and to measure injury based on mechanical parameters. However, the reliability of such models depends on the incorporation of an appropriate level of structural detail and accurate representation of the material behavior. Since recent studies have shown that several brain regions are characterized by a marked anisotropy, constitutive equations should account for the orientation-dependence within the brain. Nevertheless, in most of the current models brain tissue is considered as completely isotropic. To study the influence of the anisotropy on the mechanical response of the brain, a head model that incorporates the orientation of neural fibers is used and compared with a fully isotropic model. A simulation of a concussive impact based on a sport accident illustrates that significantly lowered strains in the axonal direction as well as increased maximum principal strains are detected for anisotropic regions of the brain. Thus, the orientation-dependence strongly affects the response of the brain tissue. When anisotropy of the whole brain is taken into account, deformation spreads out and white matter is particularly affected. The introduction of local axonal orientations and fiber distribution into the material model is crucial to reliably address the strains occurring during an impact and should be considered in numerical head models for potentially more accurate predictions of brain injury.
Traumatic brain injury (TBI) can be caused by accidents and often leads to permanent health issue... more Traumatic brain injury (TBI) can be caused by accidents and often leads to permanent health issues or even death. Brain injury criteria are used for assessing the probability of TBI, if a certain mechanical load is applied. The currently used injury criteria in the automotive industry are based on global head kinematics. New methods, based on finite element modeling, use brain injury criteria at lower scale levels, e.g., tissue-based injury criteria. However, most current computational head models lack the anatomical details of the cerebrum. To investigate the influence of the morphologic heterogeneities of the cerebral cortex, a numerical model of a representative part of the cerebral cortex with a detailed geometry has been developed. Several different geometries containing gyri and sulci have been developed for this model. Also, a homogeneous geometry has been made to analyze the relative importance of the heterogeneities. The loading conditions are based on a computational head model simulation. The results of this model indicate that the heterogeneities have an influence on the equivalent stress. The maximum equivalent stress in the heterogeneous models is increased by a factor of about 1.3-1.9 with respect to the homogeneous model, whereas the mean equivalent stress is increased by at most 10%. This implies that tissue-based injury criteria may not be accurately applied to most computational head models used nowadays, which do not account for sulci and gyri.
Multiple length scales are involved in the development of traumatic brain injury, where the globa... more Multiple length scales are involved in the development of traumatic brain injury, where the global mechanics of the head level are responsible for local physiological impairment of brain cells. In this study, a relation between the mechanical state at the tissue level and the cellular level is established. A model has been developed that is based on pathological observations of
The length scales involved in the development of diffuse axonal injury typically range from the h... more The length scales involved in the development of diffuse axonal injury typically range from the head level (i.e., mechanical loading) to the cellular level. The parts of the brain that are vulnerable to this type of injury are mainly the brainstem and the corpus callosum, which are regions with highly anisotropically oriented axons. Within these parts, discrete axonal injuries occur mainly where the axons have to deviate from their main course due to the presence of an inclusion. The aim of this study is to predict axonal strains as a result of a mechanical load at the macroscopic head level. For this, a multi-scale finite element approach is adopted, in which a macro-level head model and a micro-level critical volume element are coupled. The results show that the axonal strains cannot be trivially correlated to the tissue strain without taking into account the axonal orientations, which indicates that the heterogeneities at the cellular level play an important role in brain injury and reliable predictions thereof. In addition to the multi-scale approach, it is shown that a novel anisotropic equivalent strain measure can be used to assess these micro-scale effects from head-level simulations only.
a b s t r a c t Traumatic Brain Injury (TBI) occurs when a mechanical insult produces damage to t... more a b s t r a c t Traumatic Brain Injury (TBI) occurs when a mechanical insult produces damage to the brain and disrupts its normal function. Numerical head models are often used as tools to analyze TBIs and to measure injury based on mechanical parameters. However, the reliability of such models depends on the incorporation of an appropriate level of structural detail and accurate representation of the material behavior. Since recent studies have shown that several brain regions are characterized by a marked anisotropy, constitutive equations should account for the orientation-dependence within the brain. Nevertheless, in most of the current models brain tissue is considered as completely isotropic. To study the influence of the anisotropy on the mechanical response of the brain, a head model that incorporates the orientation of neural fibers is used and compared with a fully isotropic model. A simulation of a concussive impact based on a sport accident illustrates that significantly lowered strains in the axonal direction as well as increased maximum principal strains are detected for anisotropic regions of the brain. Thus, the orientation-dependence strongly affects the response of the brain tissue. When anisotropy of the whole brain is taken into account, deformation spreads out and white matter is particularly affected. The introduction of local axonal orientations and fiber distribution into the material model is crucial to reliably address the strains occurring during an impact and should be considered in numerical head models for potentially more accurate predictions of brain injury.
Uploads
Papers by R J H Cloots