Papers by Gursimran Singh

Video question answering is the task of automatically answering questions about videos. Among que... more Video question answering is the task of automatically answering questions about videos. Among query types which include identification, localization, and counting, the most challenging questions enquire about relationships among different entities. Answering such questions, and many others, require modeling relationships between entities in the spatial domain and evolution of those relationships in the temporal domain. We argue that current approaches have limited capacity to model such long-range spatial and temporal dependencies. To address these challenges, we present a novel spatio-temporal reasoning neural module which enables modeling complex multi-entity relationships in space and long-term ordered dependencies in time. We evaluate our module on two benchmark datasets which require spatio-temporal reasoning: TGIF-QA and SVQA. We achieve state-of-the-art performance on both datasets. More significantly, we achieve substantial improvements on some of the most challenging questi...
Uploads
Papers by Gursimran Singh