Engineer Column
Harmonizing Circuit Design and EMC Design: Introduction
2021.06.23
How do you do! My name is Inagaki, and I’m with ROHM.
I’ve been fortunate enough to have the opportunity to meet with you all on this page each month.
When designing LSIs and equipment, there is generally some conflict between circuit design, in which electrical characteristics are brought into conformance with the product specifications, and EMC design, which must conform to international EMC standards. Hence an aptitude for balance is required.
In this column on EMC, I would like to convey, at least to some extent, this sense of balance, a kind of “harmony” between these design demands.
I hope you will find this column useful.
I’ll begin by introducing myself.
I joined ROHM over 30 years ago. I was assigned to a design department for semiconductor integrated circuits (ICs). At that time bipolar ICs were the mainstream, and the process rule (the width of the metal layer wiring) was 10 μm (microns). The number of elements was also only about 100 or so, and semiconductor integrated circuits (ICs) were more or less being made by hand, as it were. Circuit diagrams were drawn by hand on graph paper, and electronic components were soldered onto a temporary board, called a breadboard, to check operation. There were no circuit simulators; it was an era in which the results of calculations using pocket calculators were compared with measurements using breadboards to design circuits. The CAD data to create glass masks for mass production were also drawn manually, and the primitive circumstances of the day were such that digitizers were used to read in data. Time flowed rather slowly back then.
But our superiors and supervisors were quite strict. I recall that they were rather merciless, or so it seemed, when addressing errors in theoretical equations and manual calculations. Likewise with measurements, I was cautioned in detail about the positioning of probes. This was an era without microcomputers or the internet, so information relating to design had to be culled from commercially available books or acquired by asking our bosses and superiors.
These circumstances were also resolved with time. Circuit simulators were introduced, microcomputers were installed, and an ideal design environment gradually took shape. I created simulation models by myself, extracted parameters, and determined model parameters to run circuit simulations. Through comparisons with measured values for “mono kits” (packages containing only a single transistor), it was possible to check the effects of different parameters in a simple manner.
One strength of ROHM’s had been custom ICs which met all the needs of our customers, and I myself was involved in the development and mass production of perhaps 20 types of custom ICs. This was a very good experience. A first prototype was used to check basic operation, and a second prototype was used to obtain characteristics. A third prototype was preparation for volume production, and in this manner, we developed analog ICs for audio and video, and analog/digital ICs. Some of the semiconductor ICs we developed in that period are even today being mass produced.
After awhile I was transferred to Tokyo and was loaned out to research labs, and also had the opportunity to participate in joint research with universities. From around this time, it was one culture shock (how archaic!) after another. I also attended overseas conferences: major foreign competitors discussing competing technologies with each other! I could hardly believe I myself was in the same room with them. In this joint research, simulation models were hammered out in extensive detail. It was in this period that I acquired all the fundamentals–how to write research papers, tips for giving presentations, how to conduct meetings, and so on.
When I was no longer dispatched to research labs, I undertook work relating to electromagnetic compatibility (EMC). My first impression was that this was a field I felt I couldn’t really understand very well. This is my twelfth year working in this field. Having handled various kinds of tasks, I have come to understand that electromagnetic compatibility (EMC) is not a deep mystery or anything, but is rather involves problems that can be solved fairly logically. I also discovered that an understanding of circuit operation can be applied to quite a lot in this field.
On the basis of these experiences and knowledge accumulated over thirty-odd years, I would like to present a wide-ranging view of semiconductor integrated circuits (ICs) and electromagnetic compatibility (EMC) without becoming too caught up in details, in order to convey the essentials in an easy-to-understand manner. I am planning a two-part series that will include introductory articles explaining ICs and EMC in simple terms, and intermediate articles that explain electromagnetic compatibility or EMC in some depth. I hope to present things in a manner that can be grasped intuitively, so please be sure to stop by!
Thank you for your interest, and see you next time.
【Download Documents】 Switching Power Supply Basic of EMC and Noise Countermeasures
This is a handbook on the basics of EMC (electromagnetic compatibility) and noise countermeasures for switching power supplies. Based on the understanding of the basics of noise, it explains the noise countermeasures using capacitors and inductors in switching power supplies.
Engineer Column
-
Motor Current and Regeneration Current When Using a Single MOSFET in PWM Driving
-
Five Engineers Talk About New Medium-Power Device Products: Part 1 Development of Bipolar Transistors for Gate Driving in Inverter Circuits for xEVs
- Part 2 Fifth-Generation -40 V/-60 V P-channel Power MOSFETs with Greatly Reduced On-Resistance
- Part 3 Super junction MOSFETs Achieve Low On-Resistance, Fast Switching with High 650 V Voltage Rating
- Part 4 Power Diodes Achieve Improved Heat Dissipation Performance, Compactness through Adoption of PMDE Package
- Part 5 The DFN2020WF Package, Developed for External MOSFETs for Automotive Primary Power Supply ICs
-
Evolution and Kinds of Motors
- Features and Selective Use of Sensored and Sensorless Driving of Brushless Motors
- The Role of Brushless Motor Position Sensors and Notes on Their Placement
- Absolute Maximum Ratings of Motor Drivers
- Output Current of Motor Drivers in Actual Use
- Method of Calculating the Power Consumption of a Brushed Motor Driver: Part 1
- Method of Calculating the Power Consumption of a Brushed Motor Driver: Part 2
- Methods for Easily Driving Brushed DC Motors
- Motor Constant-Current Operation through PWM Driving
- Methods and Differences in Current Regeneration for PWM Driving of Brushed Motors
- Conditions for the Maximum Flow of Current in a Motor
- Power Consumption when Current is Regenerated in a Parasitic Diode of a Motor Driver Output Transistor
- Relations between Load Torque, Rotation Rate, and Motor Current of Brushed DC Motors
- PWM Driving of Motors: Relationship between PWM Period and Electrical Time Constant of the Motor
-
Highly Efficient Motor Driving is the Key to the EV Revolution
-
Harmonizing Circuit Design and EMC Design: Introduction
- Part 2 Summary of Semiconductors (2) Semiconductor Integrated Circuits (LSIs, ICs)
- Part 3 Summary of Semiconductors (3) Semiconductor Integrated Circuit (LSI, IC) Modules
- Part 4 Product Specifications (1) Product Specifications of Semiconductor Integrated Circuits
- Part 5 Product Specifications (2) ?How to Read Product Specifications
- Part 6 Product Specifications (3) Examples of General EMC Evaluation Indexes
- Part 7 Evaluation Circuits and Boards (1) Using Evaluation Boards
- Part 8 Evaluation Circuits and Boards (2) Handling of Ground Wires (GND)
- Part 9 Evaluation Circuits and Boards (3) Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMS)
- Part 10 Websites (1) The Latest Information, Introduction of Major Products, Product Specs
- Part 11 Websites (2) Application Notes and Design Models
- Part 12 Websites (3) Design Support Tools
- Part 13 EMC Overview (1) What is Electromagnetic Compatibility?
- Part 14 EMC Overview (2) What is Electromagnetic Compatibility?
- Part 15 EMC Overview (3) What is Electromagnetic Compatibility?
- Part 16 EMC Calculation Methods and EMC Simulations (1): Overview of Calculation Methods
- Part 17 EMC Calculation Methods and EMC Simulations (2): Trial Calculation of Conducted Emissions (CE)
- Part 18 EMC Calculation Methods and EMC Simulations (3): Trial Calculation of Radiated Emissions (RE)
- Part 19 EMC Calculation Methods and EMC Simulations (4): Trial Calculation of Conducted Immunity (CI)
- Part 20 EMC Calculation Methods and EMC Simulations (5): Trial Calculation of Conducted Immunity (CI)
- Part 21 EMC Calculation Methods and EMC Simulations (6): Trial Calculation of Radiated Immunity (RI)
- Part 22 EMC Calculation Methods and EMC Simulations (7): Graphical User Interfaces (GUIs)
- Part 23 EMC Calculation Methods and EMC Simulations (8): Three-Dimensional (3D) Plots
- Part 24 EMC Calculation Methods and EMC Simulations (9): GNU Tools Used in Calculation Methods
- Part 1 Summary of Semiconductors (1) Transistors and Diodes