Papers by Domenico Camboni
Objective: Tactile explorations with the fingertips provide information regarding the physical pr... more Objective: Tactile explorations with the fingertips provide information regarding the physical properties of surfaces and their relative pleasantness. Previously, we performed an investigation in the active touch domain and linked several surface properties (i.e. frictional force fluctuations and net friction) with their pleasantness levels. The aim of the present study was to investigate physical factors being important for pleasantness perception during passive fingertip stimulation. Specifically we were interested to see whether factors, such as surfaces' topographies or their frictional characteristics could influence pleasantness. Furthermore, we ascertained how the stimulus pleasantness level was impacted by (i) the normal force of stimulus application (F N ) and (ii) the stimulus temperature (T S ).
Microelectronic Engineering, 2015
ABSTRACT This paper reports the design and the development of a new bio-hybrid tactile sensor bas... more ABSTRACT This paper reports the design and the development of a new bio-hybrid tactile sensor based on the integration of canine kidney epithelial cells within an artificial device. Mechanical stimuli transduced by cells were detected via electrical measurements. In the long run, this novel bio-hybrid approach can pave the way to advanced hybrid sensors provided with self-healing properties and biomimetic compliance.
Sensors, 2014
This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basic... more This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

PLoS ONE, 2013
When scanning surfaces, humans perceive some of their physical attributes. These percepts are fre... more When scanning surfaces, humans perceive some of their physical attributes. These percepts are frequently accompanied by a sensation of (un)pleasantness. We therefore hypothesized that aspects of the mechanical activity induced by scanning surfaces with fingertips could be objectively associated with a pleasantness sensation. Previously, we developed a unidimensional measure of pleasantness, the Pleasant Touch Scale, quantifying the pleasantness level of 37 different materials. Findings of this study suggested that the sensation of pleasantness was influenced by the average magnitude of the frictional forces brought about by sliding the finger on the surface, and by the surface topography. In the present study, we correlated (i) characteristics of the fluctuations of frictional forces resulting from the interaction between the finger and the surface asperities as well as (ii) the average friction with the sensation of pleasantness. Eight blindfolded participants tactually explored twelve materials of the Pleasant Touch Scale through lateral sliding movements of their index fingertip. During exploration, the normal and tangential interaction force components, fN and fT , as well as the fingertip trajectory were measured. The effect of the frictional force on pleasantness sensation was investigated through the analysis of the ratio fT to fN , i.e. the net coefficient of kinetic friction, μ. The influence of the surface topographies was investigated through analysis of rapid fT fluctuations in the spatial frequency domain. Results showed that high values of μ were anticorrelated with pleasantness. Furthermore, surfaces associated with fluctuations of fT having higher amplitudes in the low frequency range than in the high one were judged to be less pleasant than the surfaces yielding evenly distributed amplitudes throughout the whole spatial frequency domain. Characteristics of the frictional force fluctuations and of the net friction taking place during scanning can reliably be correlated with the pleasantness sensation of surfaces.
Sensors (Basel, Switzerland), 2014
The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised ... more The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor.
Uploads
Papers by Domenico Camboni