
Partial-Order Reduction for General State

Exploring Algorithms

Dragan Bošnački1, Stefan Leue2, and Alberto Lluch Lafuente3

1 Eindhoven University of Technology
Den Dolech 2, P.O. Box 513

5612 MB Eindhoven, The Netherlands
2 Department of Computer and Information Science

University of Konstanz
D-78457 Konstanz, Germany

3 Via del Giardino A 58
I 50053 Empoli (FI), Italy

Abstract. An important component of partial-order based reduction al-
gorithms is the condition that prevents action ignoring, commonly known
as the cycle proviso. In this paper we give a new version of this proviso
that is applicable to a general search algorithm skeleton also known as the
General State Expanding Algorithm (GSEA). GSEA maintains a set of
open (visited but not expanded) states from which states are iteratively
selected for exploration and moved to a closed set of states (visited and
expanded). Depending on the open set data structure used, GSEA can be
instantiated as depth-first, breadth-first, or a directed search algorithm.
The proviso is characterized by reference to the open and closed set of
states in GSEA. As a result the proviso can be computed in an efficient
manner during the search based on local information. We implemented
partial-order reduction for GSEA based on our proposed proviso in the
tool HSF-SPIN, which is an extension of the model checker SPIN for di-
rected model checking. We evaluate the state space reduction achieved by
partial-order reduction according to the proviso that we propose by com-
paring it on a set of benchmark problems to other reduction approaches.
We also compare the use of breadth-first search and A*, two algorithms
ensuring that counterexamples of minimal length will be found, together
with the proviso that we propose.

1 Introduction

Partial-Order Reduction (POR) [4, 8, 21, 22, 24, 25] is one of the main techniques
used to tackle the state explosion problem in model checking. An important
component of partial-order based reduction algorithms is the condition that
prevents action ignoring, commonly known as the cycle proviso. In this paper
we give a new version of this proviso that is applicable to a general state search
algorithm skeleton also known as the General State Exploring Algorithm (GSEA)
which maintains a set of open (visited but not expanded) states from which states

2

are iteratively selected for exploration and moved to a closed set of states (visited
and expanded).

Unlike the full state space exploration, POR expands only a subset of the
enabled actions in a given state, called the ample set. The actions outside the
ample set are temporarily ignored. However, if one is not careful, an action could
be permanently ignored along some cycle in the reduced state space. Consider
a state s that appears in both the full and the reduced state spaces. An action
a is (permanently) ignored if it is executed in s in the full state space, but it is
ignored along all execution sequences starting at s in the reduced state space.

To prevent this, we require that the following condition (which we call open
set proviso) is satisfied: at least one state s which is directly reachable via an
action from the ample set has not been visited before or it is in the set of open
states. Otherwise the ample set consists of all enabled transitions. For simplic-
ity, in the remainder of this introductory section we treat the newly generated
unvisited states also as open states since they will eventually be entered in the
open set.

The intuition behind the open set proviso is that the ignoring problem is
postponed until state s is expanded later. As the ignored actions are independent
of the actions in the ample set, they stay enabled in the open state. Thus, they
will be either selected in the ample set of s and as such executed, or they will be
delayed for another open state reachable from s. Under the assumption that the
GSEA algorithm terminates one can show that this postponement will eventually
stop. This is because the set of open states will eventually become empty.

Such a proviso is a generalization of the cycle proviso for partial-order re-
duction with breadth-first search (BFS) [2]. The BFS POR proviso in turn was
inspired by the algorithm presented in [1] for the application of POR in symbolic
state space exploration.

Being characterized by means of the open set of states in GSEA, the open
set proviso can be computed in an efficient manner during the search based on
local information, i.e., information about the currently expanded state and its
successors. Further, depending on the data structure which is used to represent
the open set, GSEA can be instantiated as a depth-first, a breadth-first, or a
directed search algorithm. As it was shown in [5], the latter can significantly
improve the error-detection capabilities of explicit state model checking.

We implemented partial-order reduction for GSEA based on our proposed
proviso in the tool HSF-SPIN, which is an extension of the model checker SPIN
for directed model checking. We evaluate the state space reduction achieved by
partial-order reduction according to the proviso that we propose by comparing
it on a set of benchmark problems to other reduction approaches.

With the development of a proviso that is applicable to BFS as well as A*,
which is an optimal directed heuristic search algorithm if an admissible heuristics
is used, we can experimentally address a further relevant issue. When checking
safety properties both BFS and A* are capable of returning counterexamples
of minimal length if an erroneous state is found in the state space. The usage
of BFS without partial order reduction is often impossible due to the memory

3

needs of this algorithm. But this obstacle to its application is partially remedied
by the availability of an efficient partial order reduction, which this paper (as
well as some previous papers) offers. It will hence be interesting to see how both
optimal algorithms perform when used to find errors with the proposed proviso.

Related Work. The POR algorithm of [1] is for symbolic state space exploration
and as such it is based on BFS. Unlike the POR version of GSEA (and the
open set proviso, as a part of it) which is presented in this paper, the algorithm
proposed in [1] is not dealing with reopening of states. Further, the practical
side of the theory in [1] hinges on the concept of history function which assigns
to each state a set of states.

The states in the history can be seen as potentially “dangerous” because
they can lead to a cycle. By requiring that at least one action leads outside
the “dangerous” set, i.e., at least one successor state does not belong to the
history, one ensures that at least one action from the ample set does not close a
cycle. (Therefore, the temporarily ignored transitions can safely be postponed.)
In order to be useful in practice, there should be a simple criterion to define
such history sets. For example, in the context of explicit state model checking,
assuming depth-first search (DFS) exploration, the history set of the currently
expanded state s consists of the states which are on the DFS stack. If at least one
of the successors is not on the DFS stack we are sure that at least one transition
from the ample set does not close a cycle.

To avoid cycles, the definition of history requires that for no two states s, s′,
s belongs to the history of s′ and, vice versa, s′ is in the history of s. Because of
the reopening of states that GSEA performs, a direct application of the history
concept is not possible since the set of open states does not satisfy such a re-
quirement. Our approach, however, results in an efficiently checkable condition
which is still expressed in terms of the set of open (closed) states.

In [5] a simple proviso is proposed. It requires that at least one newly gener-
ated state is not one of the already visited states. As the set of open states is a
subset of the visited states, the open set proviso is weaker than the visited pro-
viso. As a result reductions which are refuted by the visited proviso are allowed
by the open set proviso. Our experiments show that this leads to significantly
better results than the ones presented in [5].

In another work [14], the authors exploit the fact that the concurrent systems
we work with are defined by a parallel composition of sequential processes. This
leads to the formulation of a static version of the cycle proviso, i.e., one which do
not depend on the search status but on information that is gathered at compile-
time. This static condition is in general much stronger, and as our experiments
showed, in practice it tends to be less efficient than the open set proviso.

4

Alternatives for the cycle proviso are presented in [16] and [15]. Both refer-
ences assume DFS exploration of the state space and are therefore not directly
applicable to our setting1.

Paper Layout. In Section 2 we review the foundations of labeled transition sys-
tems, partial-order reduction and directed model checking. Our approach to-
wards an efficient partial-order reduction for general state space exploring al-
gorithms is introduced in Section 3. We describe our experimental results in
Section 4 and conclude in Section 5.

2 Preliminaries

2.1 Transition Systems

Our approach mainly targets the verification of asynchronous systems where
the global system is constructed as an asynchronous product of a set of local
component processes. We assume an interleaving model of execution. To reason
formally about such systems, we introduce the notion of a labeled transition
system.2

Definition 1 (Labeled transition system). A labeled transition system (LTS),
is a 6-tuple (S, ŝ, A, τ, Π, L), where S is a finite set of states, ŝ ∈ S is the initial
state, A is a finite set of actions, τ : S × A → S is a (partial) transition func-
tion, Π is a finite set of boolean propositions, L : S → 2Π is a state labeling
function.

Let T = (S, ŝ, A, τ, Π, L) be an LTS. An action a ∈ A is said to be T -enabled

in state s ∈ S, denoted s
a
→T iff τ(s, a) is defined. The set of all actions

a ∈ A enabled in state s ∈ S is denoted enabledT (s); that is, for any s ∈ S,

enabledT (s) = {a ∈ A | s
a
→T }. When the LTS is clear from the context we omit

the T subscript. A state s ∈ S is a deadlock state iff enabled(s) = ∅.
Transition function τ of LTS T induces a set T ⊆ S × A × S of transitions

defined as T = {(s, a, s′) | s, s′ ∈ S∧a ∈ A∧s′ = τ(s, a)}. To improve readability,

we write s
a
→ s′ for (s, a, s′) ∈ T . We also say that s′ is a successor of s.

The transition function τ implies that the LTSs are deterministic in the
sense that in a given state s an action a cannot result in more than on state.
However, this is not a restriction from a practical point of view, as we shall
now argue. Note that in practice the labels of the transitions correspond to
program statements (see [11], for instance). Consider first two statements which
are the same but belong to two different processes. For instance, this is the

1 Note to reviewers: Shortly before the submission of this paper we were made aware
of an adaptation for breadth-first search of the algorithm in [16] described in [19].
A comparison with our approach will be the subject of future research.

2 Labeled Transition Systems with state propositions, like the ones used in this paper,
are sometimes named “Labeled Kripke structures” or “Doubly labeled transition
systems”.

5

case if we have two instances of the same statement that belong to different
instances of the same concurrent process (proctype, in Spin). If the statement
does not change the program (location) counter, then the theoretical condition
that τ(s, a) always results in the same state is trivially satisfied. Suppose that in a
given (global) state s the execution of the statement that corresponds to action a

changes the program (location) counter of the process to which it belongs. Then,
since the program counters are part of the state vector, the execution of each
statement results in a different global state. In case we have non-determinism
within the same process, it does not make much sense to have statements with
the same name within the same non-deterministic choice. For instance, consider
the following code in Promela, the input language of Spin:

if

:: a=1

:: a=1

fi

Depending on the implementation, in such a case each statement would either
have a unique identifier or the statements would automatically be merged into
one statement, for instance such as in Spin.

An execution sequence of LTS T is a (finite) sequence of consecutive tran-
sitions in T . For any natural number n ∈ IN, states si ∈ S and actions ai ∈ A

with i ∈ IN and 0 ≤ i < n, s0
a0→ s1

a1→ . . . sn−1
an−1
→ sn is called an execution

sequence of length n of T iff si

ai→ si+1 for all i ∈ IN with 0 ≤ i < n. State sn is
said to be reachable from state s0. A state is said to be reachable in T iff it is
reachable from ŝ.

2.2 Partial-Order Reduction

The basic idea of state space reduction is to restrict the part of the state space
of a concurrent system that is explored during verification in such a way that
all properties of interest are preserved. Partial-order reduction exploits the in-
dependence of properties from the many possible interleavings of the individual
actions of a concurrent system. In our experimental context, actions correspond
to statements of Promela (the model specification language of SPIN and HSF-
SPIN).

To be practically useful, a reduction of the state space must be achieved
on-the-fly, during the construction and traversal of the state space. This means
that it must be decided per state which transitions, and hence which subsequent
states, must be considered. Let T = (S, ŝ, A, τ, Π, L) be some LTS.

Definition 2 (Reduction). For any so-called reduction function r : S → 2A,
we define the (partial-order) reduction of T with respect to r as the smallest LTS
Tr = (Sr, ŝr, A, τr, Π, Lr) satisfying the following conditions:

– Sr ⊆ S, ŝr = ŝ, τr ⊆ τ , and Lr = L ∩ (Sr × Π);
– for every s ∈ Sr and a ∈ r(s) such that τ(s, a) is defined, τr(s, a) is defined.

6

Note that these two requirements imply that, for every s ∈ Sr and a ∈ A, if
τr(s, a) is defined, then also τ(s, a) is defined and τr(s, a) = τ(s, a).

Formally, if the function r(s) is fixed in advance, the reduced LTS Tr is inde-
pendent of the particular algorithm with which it is generated. In practice r(s)
is computed on-the-fly during the generation of Tr, so the latter may depend on
the algorithm.

Not all reductions preserve all properties of interest. Depending on the prop-
erties that a reduction must preserve, we have to define additional restrictions
on r. To this end, we need to formally capture the notion of independence. Ac-
tions occurring in different processes can easily influence each other, for example,
when they access global variables. The following notion of independence defines
the absence of such mutual influence: two independent actions neither disable
nor enable one another and they are commutative.

Definition 3 (Independence of actions). Actions a, b ∈ A with a 6= b are
independent in a given state s ∈ S iff the following holds:

– if a ∈ enabled(s) then b ∈ enabled(s) iff b ∈ enabled(τ(s, a)),
– if b ∈ enabled(s) then a ∈ enabled(s) iff a ∈ enabled(τ(s, b)), and
– τ(τ(s, a), b) = τ(τ(s, b), a)

Actions that are not independent are called dependent. The following conditions
are sufficient for preservation of deadlocks [8, 9, 18, 23]:

– C0a: if a ∈ r(s) then a ∈ enabled(s)
– C0b: r(s) = ∅ iff enabled(s) = ∅.

– C1 (persistence): For any s ∈ S and execution sequence s0
a0→ s1

a1→ . . .
an−1
→

sn of length n ∈ IN \ {0} such that s0 = s and ai 6∈ r(s) for all i ∈ IN with
0 ≤ i < n, it holds: action an−1 is independent in sn−1 with all actions in
r(s).

In this paper we focus on subclasses of safety properties that include Promela
assertions [11] (annotations stating the truth of a predicate). (See also the com-
ments in the paragraph after Theorem 1 below.)

The main obstacle in the verification of safety properties is the so called action
ignoring problem which was identified for the first time in [24]. Informally, the
ignoring problem occurs when a reduction of a state space ignores the actions of
an entire process. For instance, if there is a cyclic process in the system which
contains only globally independent actions, i.e., does not interact with the rest
of the system, the reduction algorithm could ignore the rest of the system by
choosing only actions of this process in r(s). An action a is ignored in a state
s ∈ Sr iff a ∈ enabledT (s) and for all s′ which are reachable in Tr from s it
holds a 6∈ enabledTr

(s′). An action is ignored in Tr iff it is ignored in some state
s ∈ Sr. So, the following condition prevents action ignoring:

– C2ai: For every s ∈ Sr and every a ∈ A, if a ∈ enabledT (s), then there

exists an execution sequence s0
a0→ s1

a1→ . . . sn−1
an−1
→ sn such that s = s0

7

and which is in the reduced state space Tr (i.e., si ∈ Sr for 1 ≤ i ≤ n and
ai ∈ r(si) for 0 ≤ i ≤ n − 1) and a ∈ r(sn).

In other words, each delayed transition in s must be eventually executed in a
state reachable from s.

Condition C2ai implies that each execution sequence (of the original state
space) σ starting in s has a representative in the reduced state space. A represen-
tative violates the safety property iff the sequence in the non-reduced state space
violates the property (e.g. [1]). If we see the execution sequence as a sequence of
actions, this representative is a permutation of an action sequence obtained by
extending σ with another (possibly empty) action sequence σ′ from the original
state space. More formally, the claim is given by the following theorem:

Theorem 1. Given an LTS T and a reduction function r that satisfies C0a,

C0b, C1, and C2ai, let s0
a0→ s1

a1→ . . . sn−1
an−1
→ sn be a finite execution se-

quence of T , such that s0 ∈ Sr. Then there exists (in T) an execution se-

quence sn

an→ s1
an+1
→ . . . sn+k−1

an+k−1
→ sn+k, (k ≥ 0), such that in Tr there

exists an execution sequence s0

aπ(0)
→ s′1

aπ(1)
→ . . . s′

n+k−1

aπ(n+k−1)
→ sn+k, where

aπ(0), aπ(1), . . . , aπ(n+k−1) is a permutation of a0, a1, . . . , an+k−1.

Proof of the above theorem can be found in [24]. Analogous results were
proven previously using different versions of the condition that prevents action
ignoring (e.g. [8]). Theorem 1 is a meeting point of almost all existing POR-
like techniques. It implies preservation of various classes of safety properties (for
instance, see [25] for an overview). Among them are also Promela assertions
that can be fitted in a straightforward way in one of the existing approaches like
assertions in the sense of [8, 12], fact transitions of [24], or local properties of [1].

2.3 Directed Model Checking

Explicit-state model checking is primarily state space search. For memory effi-
ciency reasons, the most commonly used algorithms are DFS for safety property
verification and nested DFS for liveness property checking. The verification of
safety properties can be performed with BFS, which is rather memory inefficient
although it guarantees to find an error on an optimally short path. Since short
paths into property violating states are helpful in debugging, the authors of [5]
suggested the use of heuristically guided search algorithms such as best-first
search (BF) and A* in the state space search, an approach to which they refer
to as directed model checking (DMC). Such algorithms hold the potential of
locating safety property violating states on short or even optimally short error
paths while requiring less states to be stored than BFS. They accomplish this by
functions that heuristically assign to each state a value representing the desir-
ability of exploring it. Typical heuristics, for instance, estimate the distance of a
state to the set of error states. The heuristic function takes structural properties
of the state space as well as properties of the requirements specification into
account.

8

In this paper we base the construction of a cycle proviso for partial-order
reduction on a general search algorithm skeleton that we refer to as general
state expanding algorithm (GSEA), c.f. Figure 1. This algorithm divides the
set of system states S into three mutually disjoint sets: the set Open of visited
but not yet expanded states, the set Closed of visited and expanded states,
and the set of unvisited states. The algorithm performs the search by extracting
states from Open and moving them into Closed. States extracted from Open

are expanded, i.e., the respective successor states are generated. If a successor of
an expanded state is neither in Open nor in Closed it is added to Open. Based
on the processing (line 8) a state can be reopened, i.e., after it is deleted from
Closed (line 8) it is reinserted in Open (line 9). DFS (respectively, BFS) can
be defined as an instance of the general algorithm presented above, that do not
perform reopening of states and where Open is implemented as a stack (resp.,
queue).

(1) procedure GSEA(s)
(2) Closed← ∅; Open← {s}
(3) while not Open.empty() do

(4) u← Open.extract(); Closed.insert(u);
(5) if goal(u) then return solution;
(6) for each a ∈ enabledT do

(7) v ← τ (u, a); process(v);
(8) if reopenOK(v) then Closed .delete(v);
(9) if v 6∈ Closed and v 6∈ Open then Open.insert(v);

Fig. 1. A general state expanding search algorithm.

Successful heuristic search algorithms include the non-optimal algorithm BF
and the optimal algorithm A* [10]. We present a variant of A* suitable to verify
safety properties in Figure 2. It can also be considered a variant of GSEA if
one interprets Open as a priority queue in which the priority of a state v is
determined by a value f . The f–value for a state v is computed as the sum of i)
the length v.g of the currently shortest path from the start state to v and ii) the
estimated distance h(v) from v to a goal state. A* can perform a reopening of
states. This means that it can move states from Closed to Open when they are
reached along a path that is shorter than any path that they were reached on
earlier. It is necessary to reopen states in order to guarantee that the algorithm
will find the shortest path to the goal state when non-monotone heuristics are
used. Monotone heuristics satisfy the property that for each state u and each
successor v of u the difference between h(u) and h(v) is less than or equal to the
cost of the transition that goes from u to v. Note that we usually consider that
each transition has a unit cost of 1, corresponding to the step distance between

9

adjacent states. However, our algorithmic framework can easily handle non unit
costs as well. If non-monotone heuristics are applied, the number of reopenings
can be exponential in the size of the state space. However, even if many of the
heuristics that we use cannot be proven to be monotone, experimental experience
has shown that in practical protocol validation examples states are very rarely
reopened [6]. An interesting property of A* is that if h is a lower bound of the
distance to a goal state, then A* will always return the shortest path to a goal
state [17].

(1) procedure A*(s)
(2) begin

(3) Closed← ∅; Open← ∅; s.f ← h(s); s.g ← 0; Open.insert(s);
(4) while not Open.empty() do

(5) u← Open.extractmin(); Closed.insert(u);
(6) if goal(u) then return solution;
(7) for each a ∈ enabledT (u) do

(8) v ← τ (u, a); v.g ← u.g + cost(e); f ′ ← v.g + h(v);
(9) if v ∈ Open then

(10) if (f ′ < v.f) then v.f ← f ′;
(11) else if v ∈ Closed then

(12) if (f ′ < v.f) then v.f ← f ′; Closed.delete(v); Open.insert(v);
(13) else v.f ← f ′; Open.insert(v);

Fig. 2. A* search algorithm.

A key challenge in directed model checking is determining appropriate heuris-
tics. In precursory work, heuristics based on the structure of the property speci-
fication, in particular on the syntactic structure of LTL formulae, on local state
machine distances as well as property specific heuristics, for instance for deadlock
detection, were developed and experimentally evaluated. For more information
on directed model checking, as well as the tool HSF-SPIN we refer to the pa-
pers [5, 6].

When applying partial-order reduction in the context of directed model
checking one is faced with two challenges: a) The pruning of a part of the state
space leads to suboptimality of the combined method since optimal error traces
may be cut away by the reduction. Experimental results [6] show that in prac-
tical examples the sub-optimal solutions are very close to the optimal solutions,
if a discrepancy can be detected at all. b) Algorithms such as BF and A* lack
a search stack, hence a stack based action prevention condition, such as it is
used when implementing partial-order reduction for DFS based state space ex-
ploration, cannot be used. The authors of [6] therefore applied two independent
over-approximations of the cycle proviso that do not rely on the presence of a
search stack, c.f. our discussion in Section 3.

10

3 Action Ignoring Prevention Condition for General

Space Exploration

Condition C2ai from Section 2.2 is stated as a global property of the state
space and as such it is expensive to check. Therefore, for practical purposes it
is important to have a possibly stronger condition (which implies C2ai), but
which can be locally checked in an efficient way. For particular state expanding
strategies such stronger versions of the ignoring condition exist. For instance
for DFS there exists a simple locally checkable condition. For each expanded
state s in the reduced state space we require that there exists at least one
action a in the reduced action set r(s) and a state s′ ∈ Sr such that s

a
→ s′

and s′ is not on the DFS stack. In other words, at least one transition from
r(s) must lead to a transition outside the stack, i.e., must not close a cycle.
Otherwise, r(s) = enabledT (s). An analogous version of this condition exists
also for BFS [2].

The partial-order reduction version of the general state expanding algo-
rithm (POR GSEA) differs from the original of Figure 1 in line 6 only, where
enabledT (u) is substituted by r(u). We now put the emphasis on the new version
of the action ignoring prevention condition.

The conditions that ensure persistence of r, C0a, C0b and C1, do not de-
pend on the search order, as is argued in [5]. Consequently, they may remain
unchanged. Only the condition for ignoring prevention should be adjusted to
comply with the general search.

To prevent action ignoring we require that for the currently expanded state
s at least one action of r(s) leads to a state s′ that will be processed later by
the algorithm. This means that s′ is unvisited or it has been visited already but
it is in the Open set. The intuition is that the solution to the ignoring problem
is postponed until state s′ is expanded later. The actions which are temporarily
ignored in s remain enabled in s′. This is because by the persistence condition
they are independent from the actions in r(s) and therefore they cannot be
disabled. Under assumption that the algorithm terminates, i.e., that the Open
set eventually becomes empty, such a postponement will eventually stop. This is
because we will eventually arrive at a state for which all transitions lead outside
Open. For such a state our condition does not hold and therefore the set of
explored actions cannot be reduced since at that point we are guaranteed that
all possibly postponed actions will be explored.

So, we require that the reduced set (reduction function) r(u), besides condi-
tions C0a, C0b and C1, has to satisfy for each state u ∈ Sr immediately before
its use in the algorithm (the line in POR GSEA corresponding to line 6 of the
original algorithm depicted in Figure 1) also the following condition:

– C2c (closed): There exists at least one action a ∈ r(u) and a state v ∈ Sr

such that u
a
→ v and v 6∈ Closed . Otherwise, r(u) = enabledT (u).

We show below that C2c implies that the ignoring prevention condition C2ai
is satisfied too by the reduced state space, which further entails (via Theorem 1)
preservation of safety properties by the POR GSEA algorithm.

11

Lemma 1. Let T = (S, ŝ, A, τ, Π, L) be an LTS with a reduction function r that
satisfies conditions C0a, C0b, C1, and C2c. Further, let us assume that the POR
GSEA algorithm terminates when applied on the initial state ŝ and produces the
reduction Tr. Then r satisfies the ignoring prevention condition C2ai.

Proof. The proof is by induction on the (decreasing) order in which the states
are removed from Open. As in general each state can be reinserted in Open
several times, we establish the ordering based on the last removal of the state.
To this end we assign to each state a number n ∈ IN, which we call the removal
order of the state. The state which is removed as the very last is assigned the
number |Sr| − 1, where |Sr| is the number of states in Sr, while the one which
is removed first is assigned 0. Such an ordering is always possible because of
the assumption that POR GSEA terminates. As a consequence, the set Open
eventually becomes empty and there exists some state s which is removed last
from the Open set.

Base case: Let s be the state with the highest removal order, i.e., s is removed
as the last from Open. Consider the very last removal of s from Open. Since Open
is empty, all successors of s must be in Closed . (If they were new they would
have been inserted in Open which is a contradiction.) So, by condition C2c,
r(s) = enabledT (s), i.e., all enabled actions will be explored. The prevention
condition C2ai holds trivially.

Inductive step: Let s be the state with removal order n. We assume that for
each state s′′ with removal order greater than n, i.e., which is removed for the
last time from Open after s is removed for the last time, the following holds: for
each a 6∈ r(s′′), there exists a state s′ reachable via an execution sequence in the
reduced state space such that a ∈ r(s′). Consider the very last removal of s from
Open. If r(s) = enabledT (s) C2ai holds trivially. So, let us assume that r(s) is a
proper subset of enabledT (s). By condition C2c there exists at least one action

b ∈ r(s) and a state s′′ ∈ Sr such that s
b
→ s′′ and s′′ 6∈ Closed . This implies that

s′′ is either a new unvisited state and it will be inserted in Open or it is already
in Open. As by our assumption s is already removed (before it is expanded) for
the last time from Open (line 4 of the POR GSEA algorithm) we are sure that
s′′ will be removed from Open for the last time after s. Let a be an action which
is not in r(s), i.e., it is postponed. By the persistence condition C1 actions a and
b are independent and therefore a is enabled in s′′. By the induction hypothesis
there exists a state s′ reachable from s′′ via a transition sequence in the reduced
state space. The concatenation of s

a
→ s′′ and the execution sequence from s′′

to s′ gives the desired execution sequence from s to s′. ⊓⊔

After proving the termination of the concrete version of the POR GSEA algo-
rithm, its correctness follows by Lemma 1 and further by Theorem 1. Proofs of
termination of A∗ and similar directed search algorithms discussed in Section 2.3
can be found in Section 3.1.2 of [20]. As the POR versions of those algorithms
work on a subset of the original state space it is trivial to adapt the argument
from [20] to the case of the state space reduced by partial-order reduction. An-
other argument for the termination of the instances of (POR) GSEA is given
in [3].

12

In full analogy with the DFS case [21, 13], accompanied with some additional
restrictions on r [7, 22], a stronger version of the open set proviso that preserves
LTL−X and CTL∗

−X
(e.g. [4]) can be defined:

– C2cl: (closed liveness) For all actions a ∈ r(s) and states s′ ∈ Sr such that

s
a
→ s′, s′ 6∈ Closed .

We refer the reader to [3] for further details.
We now turn to the problem of finding efficiently computable cycle provisos

for A*. Using the observation made in [14] that to prevent global cycles one
has to break all local cycles of the involved concurrent processes, in [6] a static
POR method was adapted to the A* based directed model checking setting. The
method relies on marking one action in every local control cycle as “sticky”. It
is then enforced that no sticky action is allowed in an ample set of a state if the
state is not fully expanded. The resulting proviso c2s is defined as the following
condition (for the details we refer to the literature) on the reduced set r(s) of a
state s state being expanded.

– C2s (static): There exists no sticky action a ∈ r(s) such that s
a
→ s′. Other-

wise, r(s) = enabledT (s).

A second idea proposed in [6] was to enforce breaking cycles by requiring
that at least one transition in the ample set does not lead to a previously visited
state, which lead to the following condition:

– C2v (visited): There exists at least one action a ∈ r(s) and a state s′ ∈ Sr

such that s
a
→ s′ and s′ 6∈ Closed ∪ Open. Otherwise, r(s) = enabledT (s).

It is worth noting that our proviso is better than the visited proviso described
in the previous section. This is simply because C2c trivially implies C2v. In the
experimental section we will show that, in practice, C2c performs significantly
better than C2v.

For safety properties it was shown that C2s and C2v entail the original cy-
cle proviso [6]. Further, while strictly weaker than condition C2ai, experimental
results show that still significant reductions could be achieved with these condi-
tions.

4 Experiments

This section presents experimental results that evaluate the performance of the
proposed proviso. We implemented the approach described in our paper in the
tool HSF-SPIN [5] and performed various experiments in which we compare our
proposed proviso with the performance of other, previously proposed provisos
for BFS and A*. Experiments were run under Linux on PC with an AMD Athlon
1.8 Ghz processor. We use various models in our experiments: A leader election
algorithm (leader) that solves the problem of finding a leader in a ring topol-
ogy, a model of a concurrent program that solves the stable marriage problem

13

(marriers(n)), the CORBA GIOP protocol (giop(n,m)) which is a key com-
ponent of the OMG’s Common Object Request Broker Architecture (CORBA)
specification, and preliminary design of a Plain Old Telephony System (pots). A
description of these models can be found in [5]. Note that these models have been
used in benchmarking partial order reductions before, and that the GIOP and
POTS models have real-life system complexities. For scalable models we indicate
the instantiated parameters using brackets after the name of the protocol.

Our first set of experiments is devoted to a specific case of the GSEA, namely
BFS. None of the previous works on BFS with PO [2, 5] presents a comparison
with the newly proposed proviso (C2c). The results of [5], which do not consider
C2c, show that none between the visited proviso (C2v) [5] and the static proviso
(C2s) [14] is better than the other. In contrast, the results of [2] do not consider
C2s but show that the C2c is significantly better than C2v. The main question to
investigate is therefore how C2c performs in comparison to C2s. Table 1 depicts
results obtained by completely exploring the state space of some models using
BFS as search algorithm in combination with various reduction methods: no
partial-order reduction at all (no), no action ignoring prevention (C2i), C2v,
C2s and C2c. Note that C2i leads to an unsound reduction. We introduce it only
in order to assess the other provisos in terms of the number of ample sets that
they refuse. For each experiment we present the size of the state space (s), the
amount of memory required (m), and the running time (r).

The first thing we observe is that C2c performs better than C2v. This, for
instance, becomes especially obvious in model giop where C2c explores about
three times less states. Regarding the comparison with the C2s approach, the
C2c based reduction performs better in all cases. Here, model leader is the most
significant example since C2c explores almost four times less states. Finally, by
comparing the colums C2c and C2i we observe that C2c refuses ample sets in
model giop only. Note that when the exploration with C2c results in equal state
spaces as when ignoring the proviso, there is a small difference in the running
time that can be traced to the overhead caused by computing the proviso.

We continue the evaluation of our C2c proviso in a different setting, namely
where the goal is error detection and directed model checking algorithms like A*
are used. We also performed additional experiment with other DMC algorithms
like best-first search leading to similar results. The results of [5] show no clear
winner between C2v and the C2s. Hence, the first question to answer is whether
C2c outperforms C2s. Second we would like to find out to what degree C2c is
actually superior to C2v.

To answer this last question we basically extend the results presented in [5]
with C2c. Table 2 depicts the results. As in the previous set of experiments,
C2c performs significantly better than C2v. See, for instance, models marriers
and giop, where the number of states explored with C2c is only about half the
number explored with C2v. On the other hand, there is no clear winner between
C2c and C2s approach. For instance, the best reduction is achieved with C2s in
model marriers and with C2c in model giop. In the rest of the models both
provisos work equally well.

14

marriers(3)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2c

s 96,295 29,501 56,345 57,067 29,501
m 12 MB 6 MB 8 MB 8 MB 6 MB
r 1.13 s 0.21 s 0.58 s 0.54 s 0.23 s

leader(6)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2c

s 445,776 3,160 5,209 11,921 3,160
m 147 MB 3 MB 4 MB 6 MB 3 MB
r 34.48 s 0.07 s 0.18 s 0.19 0.08 s

giop(2,1)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2c

s 664,376 65,964 209,382 231,102 66,160
m 384 MB 39 MB 122 MB 134 MB 39 MB
r 16.42 s 1.12 s 4.76 s 4.44 s 1.23 s

Table 1. Completely exploring state spaces with BFS and several reduction methods.

By comparing the two previous sets of experiments we observe the following
phenomenon: in model marriers, algorithm BFS with C2c explores as many
states as BFS with C2i (Table 1), while A* with C2c explores almost twice the
states than A* with C2i (Table 2). In other words, the C2c proviso is refuting
ample sets when the search algorithm is A* but not when it is BFS. What
happens is that the new proviso, as the rest of the provisos, depends on the
order in which states are explored. This issue can be illustrated by a simple
example. Assume the following state space:

s0
c

//

d

$$
J

J

J

J

s1
a

//

b
��

s2

b
��

s3
a

// s4

Suppose that ŝ = s0 and that actions a,b are unconditionally independent
and that we use BFS with our proviso to explore the state space. First, state s0

is extracted from the open set and its successors s1, s3 are inserted into Open

(we assume that no reduction is possible at s0). Assume that the order in which
they are inserted is s1 first and then s3. At the next iteration of BFS, state s1 is
selected for expansion. Now, {b} is selected as ample set since it satisfies all the
conditions. In the last step state s4 is explored. The algorithm, hence, explores
all states but s2.

Consider now that s3 is inserted in Open first and s1 second. Now, state s3

is extracted from the Open set and s4 is inserted in it. In the next step, state s2

is selected for expansion, but this time set {b} is refused by C2c since state s3

is no more in the open set. Thus, the search is forced to visit state s4. In sum,
the whole state space is visited.

We have performed some experiments in which the exhaustive exploration
is performed randomly. This was done by using algorithm A* and a random

15

marriers(4)

A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 225,404 37,220 100,278 37,220 58,500 155,894
m 31 MB 7 MB 15 MB 7 MB 6 MB 22 MB
r 5.15 s 0.31 s 2.99s 0.36 s 0.73 s 7.17 s

pots

A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 6,654 5,429 5,574 5,429 5,429 22,786
m 5 MB 4 MB 4 MB 4 MB 4 MB 12 MB
r 0.18 s 0.15 s 0.15 s 0.15 s 0.15 s 0.78 s

leader(8)

A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 558,214 104 104 104 104 128
m 265 MB 2 MB 2 MB 2 MB 2 MB 2 MB
r 30.54 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s

giop(3,1)

A*+no A*+C2i A*+C2v A*+C2s A*+C2c BFS+C2c

s 485,907 90,412 314,964 191,805 117,846 120,132
m 291 MB 55 MB 189 MB 116 MB 72 MB 73 MB
r 20.09 s 2.82 s 12.41 s 6.60 s 3.98 s 2,52

Table 2. Finding a safety violation with A* and BFS with several reduction methods.

heuristic function. The result leads to larger state spaces than with BFS. At this
point an interesting question arises. While previous work presents the benefits
of using directed search algorithms over BFS, can BFS when used with C2c take
advantage of the exploration order phenomenon so as to become more memory
efficient than A* with C2c? This in particular since partial-order reduction holds
the potential of containing the state space explosion that BFS is particularly
vulnerable to. To answer this question we included experiments with BFS and
C2c in Table 2. With the C2c proviso A* explores less states than BFS with C2c.
While in models pots and marriers the improvement is significant, in giop the
small difference together with the overhead introduced by heuristics leads to
slightly longer running times for A*.

5 Conclusions

In this paper we present a partial-order reduction for general state exploring
algorithms. The main novelty in the algorithm lies in the condition for avoiding
action ignoring, which we call open set proviso. During the state space explo-
ration this condition can be checked locally and in an efficient way. We imple-
mented the open set proviso for some directed model checking algorithms which
are special instances of the general search algorithm. The experimental results
show that the new proviso leads to a significant performance improvement of
the directed model checking algorithms in comparison to previously known pro-

16

visos. The experiments also showed that A* together with the open list proviso
is performing superior in terms of explored states and memory consuption over
BFS with partial-order reduction and this new proviso.

We notice that the efficiency of the proviso can depend on the order in which
the actions in the reduced state set are selected. It could be interesting to see
if this can be exploited to further improve the partial-order algorithm. Another
interesting topic for future work will be to apply the ideas of this paper in the
realm of symbolic model checking, for instance, for the verification of liveness
properties.

References

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani, Partial-

order reduction in symbolic state-space exploration, Formal Methods in System De-

sign, 18:97-116, 2001. A preliminary version appeared in Proc. of the 9th Inter-
national Conference on Computer-aided Verification, CAV ’97, LNCS 1254, pp.
340–351, Springer, 1997.

2. D. Bošnački, G.J. Holzmann, Improving Spin’s Partial-Order Reduction for

Breadth-First Search, Model Checking Software: 12th International SPIN Work-
shop, SPIN 2005, LNCS 3639, pp.91-105, Springer, 2005.

3. D. Bošnački, S. Leue, A. Lluch Lafuente, Partial-Order Reduction for General State

Exploring Algorithms, Technical Report soft-05-02, Chair for Software Engineering,
University of Konstanz, 2005.
http://www.inf.uni-konstanz.de/soft/research/publications/pdf/soft-05-01.pdf

4. E. Clarke, O. Grumberg, D.A. Peled, Model Checking MIT Press, 2000.
5. S. Edelkamp, A. Lluch Lafuente and S. Leue, Directed explicit-state model check-

ing in the validation of communication protocols, Software Tools for Technology
Transfer, vol. 5, pp. 247-267, 2004.

6. S. Edelkamp, S. Leue and A. Lluch Lafuente, Partial-order reduction and trail

improvement in directed model checking, International Journal on Software Tools
for Technology Transfer, vol. 6, nr. 4, pp. 277-301, 2004.

7. R. Gerth, R. Kuiper, D. Peled, W. Penczek, A Partial-Order Approach to Branch-

ing Time Logic Model Checking, Information and Computation 150(2): 132-152,
1999.

8. P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems:

An Approach to the State Space Explosion, LNCS 1032, Springer, 1996.
9. P. Godefroid, P. Wolper, Using Partial-Orders for the Efficient Verification of

Deadlock Freedom and Safety Properties, Computer Added Verification, CAV ’91,
LNCS 575, pp. 332-342, Springer, 1991.

10. P.E. Hart, N.J. Nilsson and B. Raphael, A formal basis for heuristic determination

of minimum path costs, IEEE Transactions on Systems Science and Cybernetics,
4:100-107, 1968.

11. G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison
Wesley, 2003.

12. G.J. Holzmann, P. Godefroid, D. Pirottin, Coverage Preserving Reduction Strate-

gies for Reachability Analysis, in Proc. 12th IFIP WG 6.1. International Sym-
posium on Protocol Specification, Testing, and Validation, FORTE/PSTV ’92,
pp.349-363, North-Holland, 1992.

17

13. G.J. Holzmann, D. Peled, An Improvement in Formal Verification, FORTE 1994,
Bern, Switzerland, 1994.

14. R.P. Kurshan, V. Levin, M. Minea, D. Peled, H. Yenigün, Static Partial-Order

Reduction, in Tools and Algorithms for Construction and Analysis of Systems
TACAS ’98, LNCS 1384, pp. 345-357, 1998.

15. V. Levin, R. Palmer, S. Qadeer, S.K. Rajamani, Sound Transaction-Based Reduc-

tion Without Cycle Detection, Model Checking Software: 12th International SPIN
Workshop, SPIN 2005, LNCS 3639, pp.106-121, Springer, 2005.

16. R. Nalumasu, G. Gopalakrishnan, An Efficient Partial-Order Reduction Algorithm

with an Alternative Proviso Implementation, Formal Methods in System Design
20(3): 231-247, 2002.

17. N.J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co. Palo Alto,
California, 1980.

18. W.T. Overman, Verification of Concurrent Systems: Function and Timing, Ph.D.
Thesis, UCLA, Los Angeles, California, 1981.

19. R. Palmer, G. Gopalakrishnan, A Distributed Partial Order Reduction Algorithm,
FORTE 2002, LNCS 2529, p.370, 2002.

20. J. Pearl, Heuristics, Addison-Wesley, 1985
21. D.A. Peled, Combining Partial-Order Reductions with On-the-Fly Model Checking,

Formal Methods on Systems Design, 8: 39-64, 1996. A previous version appeared
in Computer Aided Verification 1994, LCNS 818, pp. 377-390, 1994.

22. B. Willems, P. Wolper, Partial-Order Models for Model Checking: From Linear to

Branching Time, Proc. of 11 Symposium of Logics in Computer Science, LICS 96,
New Brunswick, pp. 294-303, 1996.

23. A. Valmari, Eliminating Redundant Interleavings during Concurrent Program Ver-

ification, Proc. of Parallel Architectures and Languages Europe ’89, vol. 2, LNCS
366, pp. 89-103, Springer, 1989.

24. A. Valmari, A Stubborn Attack on State Explosion, in Advances in Petri Nets,
LNCS 531, pp. 156-165, Springer, 1991.

25. A. Valmari, The State Explosion Problem, Lectures on Petri Nets I: Basic Models,
LNCS Tutorials, LNCS 1491, pp. 429-528, Springer, 1998.

