Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Django with Distributed Systems
Search
Andrew Godwin
April 07, 2017
Programming
3
2.2k
Scaling Django with Distributed Systems
A talk I gave at PyCon Ukraine 2017.
Andrew Godwin
April 07, 2017
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
280
Django Through The Years
andrewgodwin
0
180
Writing Maintainable Software At Scale
andrewgodwin
0
420
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
330
Async, Python, and the Future
andrewgodwin
2
630
How To Break Django: With Async
andrewgodwin
1
700
Taking Django's ORM Async
andrewgodwin
0
700
The Long Road To Asynchrony
andrewgodwin
0
620
The Scientist & The Engineer
andrewgodwin
1
730
Other Decks in Programming
See All in Programming
requirements with math
moony
0
520
GDG Super.init(version=6) - From Where to Wear : 모바일 개발자가 워치에서 발견한 인사이트
haeti2
0
560
生成AIの使いどころ
kanayannet
0
100
JavaOne 2025: Advancing Java Profiling
jbachorik
1
310
PHPのガベージコレクションを深掘りしよう
rinchoku
0
240
Firebase Dynamic Linksの代替手段を自作する / Create your own Firebase Dynamic Links alternative
kubode
0
180
生産性アップのためのAI個人活用
kunoyasu
0
640
보일러플레이트 코드가 진짜 나쁜 건가요?
gaeun5744
0
370
goにおける コネクションプールの仕組み を軽く掘って見た
aronokuyama
0
140
CTFのWebにおける⾼難易度問題について
hamayanhamayan
1
970
プログラミング教育のコスパの話
superkinoko
0
120
OUPC2024 Day 1 解説
kowerkoint
0
400
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Automating Front-end Workflow
addyosmani
1369
200k
Become a Pro
speakerdeck
PRO
27
5.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
7
620
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Music & Morning Musume
bryan
46
6.4k
Transcript
None
Andrew Godwin Hi, I'm Django core developer Senior Software Engineer
at Used to complain about migrations a lot
Distributed Systems
c = 299,792,458 m/s
Early CPUs c = 60m propagation distance Clock ~2cm 5
MHz
Modern CPUs c = 10cm propagation distance 3 GHz
Distributed systems are made of independent components
They are slower and harder to write than synchronous systems
But they can be scaled up much, much further
Trade-offs
There is never a perfect solution.
Fast Good Cheap
None
Load Balancer WSGI Worker WSGI Worker WSGI Worker
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache Cache
Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Database
CAP Theorem
Partition Tolerant Consistent Available
PostgreSQL: CP Consistent everywhere Handles network latency/drops Can't write if
main server is down
Cassandra: AP Can read/write to any node Handles network latency/drops
Data can be inconsistent
It's hard to design a product that might be inconsistent
But if you take the tradeoff, scaling is easy
Otherwise, you must find other solutions
Read Replicas (often called master/slave) Load Balancer WSGI Worker WSGI
Worker WSGI Worker Replica Replica Main
Replicas scale reads forever... But writes must go to one
place
If a request writes to a table it must be
pinned there, so later reads do not get old data
When your write load is too high, you must then
shard
Vertical Sharding Users Tickets Events Payments
Horizontal Sharding Users 0 - 2 Users 3 - 5
Users 6 - 8 Users 9 - A
Both Users 0 - 2 Users 3 - 5 Users
6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A
Both plus caching Users 0 - 2 Users 3 -
5 Users 6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache
Teams have to scale too; nobody should have to understand
eveything in a big system.
Services allow complexity to be reduced - for a tradeoff
of speed
Users 0 - 2 Users 3 - 5 Users 6
- 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache User Service Event Service Ticket Service
User Service Event Service Ticket Service WSGI Server
Each service is its own, smaller project, managed and scaled
separately.
But how do you communicate between them?
Service 2 Service 3 Service 1 Direct Communication
Service 2 Service 3 Service 1 Service 4 Service 5
Service 2 Service 3 Service 1 Service 4 Service 5
Service 6 Service 7 Service 8
Service 2 Service 3 Service 1 Message Bus Service 2
Service 3 Service 1
A single point of failure is not always bad -
if the alternative is multiple, fragile ones
Channels and ASGI provide a standard message bus built with
certain tradeoffs
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Channels Library
Django Django Channels Project
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Pure Python
Failure Mode At most once Messages either do not arrive,
or arrive once. At least once Messages arrive once, or arrive multiple times
Guarantees vs. Latency Low latency Messages arrive very quickly but
go missing more Low loss rate Messages are almost never lost but arrive slower
Queuing Type First In First Out Consistent performance for all
users First In Last Out Hides backlogs but makes them worse
Queue Sizing Finite Queues Sending can fail Infinite queues Makes
problems even worse
You must understand what you are making (This is surprisingly
uncommon)
Design as much as possible around shared-nothing
Per-machine caches On-demand thumbnailing Signed cookie sessions
Has to be shared? Try to split it
Has to be shared? Try sharding it.
Django's job is to be slowly replaced by your code
Just make sure you match the API contract of what
you're replacing!
Don't try to scale too early; you'll pick the wrong
tradeoffs.
Thanks. Andrew Godwin @andrewgodwin channels.readthedocs.io