头像
陈振宇 教授
软件学院
电话:025-83621360
地址:汉口路22号
办公地址:费彝民楼902
邮编:210093

简介

南京大学软件学院教授、博导,主要从事智能软件工程研究,长期致力于产教研融合。IEEE国际软件测试大赛发起人,江苏省计算机学会产业工委执行主任,CCF杰出会员与杰出讲者,国家级一流本科课程《软件测试》负责人,网信优秀人才,江苏省333高层次人才培养工程(第二层次),江苏省技术能手。担任ISSTA、ICSE、FSE、ASE等会议的程序委员会委员,IEEE Transactions on Reliability期刊Associate Editor。主持国家重点研发计划项目和课题各1项,主持国家自然科学基金重点项目1项。 在国际权威会议和期刊发表论文百余篇,多次荣获ACM SIGSOFT Distinguished Paper和IEEE QRS Best Paper。授权发明专利30余项,部分成果已经在华为、中国船舶、航天科工、国家电网、中国电科等知名企业转化,研究成果获2012年江苏省科学技术奖一等奖、2015年湖北省科技进步一等奖、2017年CCF NASAC青年软件创新奖、2018年国家级教学成果奖二等奖、2021年中国电子学会科技进步奖一等奖、2021年江苏省教学成果奖特等奖、2022年国家级教学成果奖一等奖和二等奖、2025年教育部-华为智能基座优秀教师。


教学工作

主要承担《软件测试》教学工作,MOOC请参阅中国大学MOOC和学习强国等平台

主编软件测试教材:
Ø《开发者测试》(第二版)机械工业出版社

Ø《软件测试基础》清华大学出版社

Ø《软件测试》电子工业出版社

全国大学生软件测试大赛请参阅mooctest.org

教学实践资源参阅慕测平台mooctest.net

代表性教学改革论文:
ØSoftware-testing Contests: Observations and Lessons Learned. IEEE Computer 2021

ØMAF: Method-anchored Test Fragmentation for Test Code Plagiarism Detection. ICSE 2019

ØImproving Software Testing Education via Industry Sponsored Contests. FIE 2018

ØRevisit of Automatic Debugging via Human Focus-tracking Analysis. ICSE 2016

ØQuasi-Crowdsourcing Testing for Educational Projects. ICSE 2014


科研工作

主持的科研项目

Ø国家重点研发计划项目: 开源开放创新服务平台技术研发与应用示范(2025-2028)

Ø国家自然科学基金重点项目: 智能软件系统的数据驱动测试方法与技术(2020-2024)

Ø国家重点研发计划课题: 人民法院业务和数据标准研究和制定、司法基本服务库和案例筛选评估模型构建(2016-2020)

Ø国家自然科学基金面上项目: 基于程序特征的测试数据多样性分析及其应用(2014-2017)

Ø国家自然科学基金面上项目: 多阶段融合的测试用例演化技术(2012-2015)

Ø国家自然科学基金青年基金:基于程序切片的软件测试优化技术(2009-2011)

参与的科研项目

Ø深港澳科技计划:面向6G泛在无线智联的韧性边缘智能系统关键技术研究(2024-2025)

Ø国家重点研发计划项目: 信息产品及科技服务集成化众测服务平台研发与应用(2019-2021)

Ø国家自然科学基金重大项目: 基于互联网群体智能的软件开发方法研究(2017-2022)

Ø国家973计划:安全攸关软件系统的构造与质量保障方法研究(2014-2019)

部分代表性论文

数据基准集

TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models. FCS 2025

Benchmarking Object Detection Robustness against Real-World Corruptions. IJCV 2024

Benchmarking Robustness of AI-enabled Multi-sensor Fusion Systems: Challenges and Opportunities. FSE 2023

综述论文

A Survey on Large Language Models for Software Engineering. SCIS 2025

A Survey of Learning-based Automated Program Repair. TOSEM 2023

Smart Contract Development: Challenges and Opportunities. TSE 2021

众包软件测试研究进展. 软件学报 2018

代码自动理解

Source Code Summarization in the Era of Large Language Models. ICSE 2025

ESALE: Enhancing Code-Summary Alignment Learning for Source Code Summarization. TSE 2024

A Survey of Source Code Search: A 3-dimensional Perspective. TOSEM 2023

TransformCode: a Contrastive Learning Framework for Code Embedding via Subtree Transformation. TSE 2024

An Extractive-and-abstractive Framework for Source Code Summarization. TOSEM 2024

代码自动修复

APPT: Boosting Automated Patch Correctness Prediction via Fine-tuning Pre-trained Models. TSE2024

A Survey of Learning-based Automated Program Repair. TOSEM 2023

GAMMA: Revisiting Template-based Automated Program Repair via Mask Prediction. ASE 2023

Pre-trained Model-based Automated Software Vulnerability Repair: How Far are We? TDSC 2023

代码大模型安全

DuCodeMark: Dual-Purpose Code Dataset Watermarking via Style-Aware Watermark–Poison Design. FSE 2026

Hidden Backdoor Attack against Neural Code Search Models. TOSEM 2025

Security of Language Models for Code: A Systematic Literature Review. TOSEM 2025

Mutual Information Guided Backdoor Mitigation for Pre-trained Encoders. T-IFS 2025

Show Me Your Code! Kill Code Poisoning : A Lightweight Method Based on Code Naturalness. ICSE 2025
Eliminating Backdoors in Neural Code Models for Secure Code Understanding. FSE 2025

单元测试生成

Improving LLM-based Unit Test Generation via Template-based Repair. arXiv

TestART: Improving LLM-based Unit Test via Co-Evolution of Automated Generation and Repair Iteration. arXiv

Improving Deep Assertion Generation via Fine-Tuning Retrieval-Augmented Pre-Trained Language Models. TOSEM 2025

Improving Retrieval-Augmented Deep Assertion Generation via Joint Training. TSE 2025

A Large-scale Empirical Study on Fine-tuning Large Language Models for Unit Testing. ISSTA 2025

Exploring Automated Assertion Generation via Large Language Models. TOSEM 2024

GUI测试生成

Vision-based Mobile APP GUI Testing: A Survey. CSUR 2025

Test Script Intention Generation for Mobile Application via GUI Image and Code Understanding. TOSEM 2025

基于大模型语义匹配的跨平台移动应用测试脚本录制回放. 软件学报 2025 

Effective, Platform-Independent GUI Testing via Image Embedding and Reinforcement Learning. TOSEM 2024

Practical, Automated Scenario-based Mobile App Testing. TSE 2024

Practical Non-Intrusive GUI Exploration Testing with Visual-based Robotic Arms. ICSE 2024

SITAR: GUI Test Script Repair. TSE 2016

Virtual DOM Coverage for Effective Testing of Dynamic Web Applications. ISSTA 2014

智能系统测试理论与方法
ACTesting: Automated Cross-modal Testing Method of Text-to-Image Software. TOSEM 2025

Tightening Robustness Verification of MaxPool-based Neural Networks via Minimizing the Over-Approximation Zone. CVPR 2025

Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via Tightening Linear Approximation. CVPR 2024

Dynamic Data Fault Localization for Deep Neural Networks. FSE 2023

Qatest: A Uniform Fuzzing Framework for Question Answering Systems. ASE 2022

ASRTest: Automated Testing for Deep-neural-network-driven Speech Recognition Systems. ISSTA 2022

Adaptive Test Selection for Deep Neural Networks. ICSE 2022

DeepState: Selecting Test Suites to Enhance the Robustness of Recurrent Neural Networks. ICSE 2022

DialTest: Automated Testing for Recurrent-neural-network-driven Dialogue Systems. ISSTA 2021

Deepgini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks. ISSTA 2020

Munn: Mutation Analysis of Neural Networks. QRS 2018

深度学习框架测试

Scalpel: Automotive Deep Learning Framework Testing via Assembling Model Components. ICSE 2026

Automated Detection and Repair of Floating-point Precision Problems in Convolutional Neural Network Operators. TOSEM 2025
DevMuT: Testing Deep Learning Framework via Developer Expertise-Based Mutation. ASE 2024

Mutation-Based Deep Learning Framework Testing Method in JavaScript Environment. ASE 2024

Generation-based Differential Fuzzing for Deep Learning Libraries. TOSEM 2023

Duo: Differential Fuzzing for Deep Learning Operators. TRel 2022

Predoo: Precision Testing of Deep Learning Operators. ISSTA 2021

Graph-based Fuzz Testing for Deep Learning Inference Engines. ICSE 2021

自动驾驶与智能网联测试
DRIVENCE: Realistic Driving Sequence Synthesis for Testing Multi-sensor Fusion Perception Systems. TSE 2026 

When Autonomous Vehicle Meets V2X Cooperative Perception: How Far Are We? ASE 2025

Spatial Semantic Fuzzing for LiDAR-based Autonomous Driving Perception Systems TSE 2025

SoVAR: Build Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE 2024

CooTest: An Automated Testing Approach for V2X Communication Systems. ISSTA 2024

Semantic-guided Fuzzing for Virtual Testing of Autonomous Driving Systems. JSS 2024

MultiTest: Physical-aware Object Insertion for Testing Multi-sensor Fusion Perception Systems. ICSE 2024

LiRTest: augmenting LiDAR point clouds for automated testing of autonomous driving systems. ISSTA 2022

众包与群体智能测试

Multi-dimensional Assessment of CrowdSourced Testing Reports via LLMs. ASE 2025     

Enhanced Crowdsourced Test Report Prioritization via Image-and-Text Semantic Understanding and Feature Integration. TSE 2024

Semi-supervised Crowdsourced Test Report Clustering via Screenshot-Text Binding Rules. FSE 2024

Mobile APP Crowdsourced Test Report Consistency Detection via Deep Image-and-Text Fusion Understanding. TSE 2023

Intelligent Crowdsourced Testing. Springer 2022

Prioritize Crowdsourced Test Reports via Deep Screenshot Understanding. ICSE 2021

CTRAS: Crowdsourced Test Report Aggregation and Summarization. ICSE 2019

Successes, Challenges, and Rethinking–an Industrial Investigation on Crowdsourced Mobile Application Testing. EMSE 2019

Multi-objective Test Report Prioritization Using Image Understanding. ASE 2016

Test Report Prioritization to Assist Crowdsourced Testing. FSE 2015

学术论文详细清单参阅谷歌学术:

https://scholar.google.com/citations?user=HQWxCnkAAAAJ&hl=en