Periodontitis is a common disease involving inflammation and tissue destruction in the periodonta... more Periodontitis is a common disease involving inflammation and tissue destruction in the periodontal region. Although uncontrolled long-term inflammation in the gingiva may lead to loss of the periodontal ligament, treatments or preventive solutions for periodontitis are scarce. The aim of this study is to find anti-inflammatory material from a natural source that can be used to treat or protect against periodontitis. Daphne species (Thymelaeaceae) are important and popular components of traditional Chinese medicine and are used as anti-inflammatory agents. Daphne jejudoensis is an endemic plant that grows on Jeju Island and was identified as a new species in 2013. In this study, for the first time, we investigated the anti-inflammatory effect of D. jejudoensis leaf extract (DJLE) on human periodontal ligament cells. The gene expression levels of pro-inflammatory cytokines (interleukin-1β and 6 and tumor necrosis factor-α) and inflammation-inducible enzymes (inducible nitric oxide syn...
Epithelial-mesenchymal interaction occurs during development of various tissues, including teeth ... more Epithelial-mesenchymal interaction occurs during development of various tissues, including teeth and bone. Recently, a preameloblast-conditioned medium (PA-CM) from mouse apical bud cells (ABCs), a type of dental epithelial cell, was found to induce odontogenic differentiation of dental pulp stem cells and promote dentin formation. The aims of the present study were to investigate the effects of PA-CM on human bone marrow mesenchymal stem cells (hBMSCs) in vitro, and to investigate the bone regenerative capacity in vivo through epithelial-mesenchymal interactions of developmental osteogenesis. Coculturing with ABCs and PA-CM treatment upregulated osteoblast differentiation markers of hBMSCs compared to cells cultured alone. PA-CM accelerated mineralized nodule formation and also increased bone sialoprotein promoter activity in hBMSCs. PA-CM facilitated the migration of hBMSCs, but did not significantly influence proliferation. PA-CM promoted bone formation of hBMSCs in vivo. Radiogr...
In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important funct... more In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important function of removing the remaining organic matrix in the mineralization and maturation of the enamel matrix. Mutations in the kallikrein 4 (KLK4), enamelysin (MMP20), and WDR72 genes have been identified as causing hypomaturation enamel defects in an autosomal-recessive hereditary pattern. In this report, 2 consanguineous families with a hypomaturation-type enamel defect were recruited, and mutational analysis was performed to determine the molecular genetic etiology of the disease. Whole exome sequencing and autozygosity mapping identified novel homozygous mutations in the KLK4 (c.620_621delCT, p.Ser207Trpfs*38) and MMP20 (c.1054G>A, p.Glu352Lys) genes. Further analysis on the effect of the mutations on the translation, secretion, and function of KLK4 and MMP20 revealed that mutant KLK4 was degraded intracellularly and became inactive while mutant MMP20 was expressed at a normal level but...
This study aimed to measure the thickness of the epithelium and lamina propria of the palatal muc... more This study aimed to measure the thickness of the epithelium and lamina propria of the palatal mucosa and to elucidate the location of the greater palatine artery to provide the anatomical basis for subepithelial connective tissue grafting. Thirty-two maxillary specimens, taken from the canine distal area to the first molar distal area, were embedded in paraffin and stained with hematoxylin-eosin. The thickness of the epithelium and lamina propria of the palatal mucosa was measured at three positions on these specimens, starting from 3 mm below the alveolar crest and in 3-mm intervals. The location of the greater palatine artery was evaluated by using image-processing software. The mean epithelial thickness decreased significantly in the posterior teeth; it was 0.41, 0.36, 0.32, and 0.30 mm in the canine, first premolar, second premolar, and first molar distal areas, respectively. The lamina propria was significantly thicker in the canine distal; it was 1.36, 1.08, 1.09, and 1.05 mm,...
We tested the hypothesis that human glucocorticoid-induced tumor necrosis factor receptor (hGITR/... more We tested the hypothesis that human glucocorticoid-induced tumor necrosis factor receptor (hGITR/TR11) expressed on the surface of activated CD4(+) T cells is responsible for up-regulating the production of matrix metalloproteinase (MMP)-13 by fibroblast-like synoviocytes (FLSs). The level of MMP-13 was measured by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). Expressions of hGITR ligand (hGITRL) on the surface of FLSs and hGITR on the surface of human CD4(+) T cells were analyzed by flow cytometry and RT-PCR. Neutralizing antibodies (Abs) were used to block hGITRL and hGITR on the surface of FLSs and human CD4(+) T cells, respectively. Human CD4(+) T cells were cocultured with FLSs to facilitate interaction between hGITR on CD4(+) T cells and hGITRL on FLSs. Soluble hGITR (shGITR) stimulated FLSs to produce MMP-13, and blockade of hGITRL reduced this effect. Direct contact between activated CD4(+) T and FLSs also induced the production of MMP-13, and neutralization of hGITR on activated CD4(+) T cells during coculture decreased the amount of MMP-13 produced by FLSs. shGITR stimulated FLSs to produce MMP-13 via a signal through hGITRL. Direct contact between activated CD4(+) T cells and FLSs facilitated hGITR-hGITRL interaction, and resulted in inducing MMP-13. This effect may increase tissue destruction in chronic inflammation such as rheumatoid arthritis (RA).
Background: Progression to metastasis is the leading cause of most cancer-related mortality; howe... more Background: Progression to metastasis is the leading cause of most cancer-related mortality; however, much remains to be understood about what facilitates the spread of tumor cells. In the present study, we describe a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness.
The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cel... more The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cells, while that of osteoporosis patients has a larger portion of adipocytes. There is evidence that the epigenetic landscape can strongly influence cell differentiation. We have shown that it is possible to direct the trans-differentiation of adipocytes to osteoblasts by modifying the epigenetic landscape with a DNA methyltransferase inhibitor (DNMTi), 5'-aza-dC, followed by Wnt3a treatment to signal osteogenesis. Treating 3T3-L1 adipocytes with 5'-aza-dC induced demethylation in the hypermethylated CpG regions of bone marker genes; subsequent Wnt3a treatment drove the cells to osteogenic differentiation. When old mice with predominantly adipose marrow were treated with both 5'-aza-dC and Wnt3a, decreased fatty tissue and increased bone volume were observed. Together, our results indicate that epigenetic modification permits direct programming of adipocytes into osteoblasts in...
Odontogenic ameloblast-associated protein (ODAM) has been shown to be specifically expressed in a... more Odontogenic ameloblast-associated protein (ODAM) has been shown to be specifically expressed in ameloblasts and odontoblasts and has been suggested to play a role in the mineralization of the enamel, possibly through the regulation of matrix metalloproteinase 20. However, its function in dentin is not clear. The purpose of this study was to evaluate the effect of ODAM on tertiary dentin formation. MDPC-23 odontoblastic cells were cultured, and the effect of recombinant ODAM (rODAM) on mineralized nodule formation was evaluated. Pinpoint pulp exposures were made in rat teeth and then capped with rODAM mixed with a carrier (rODAM group), carrier only (Carrier group), or white mineral trioxide aggregate (WMTA group). After 1, 2, and 4 weeks, odontoblasts and tertiary dentin were investigated histologically and immunohistochemically. Nodule formation in MDPC-23 cells was enhanced by rODAM treatment. Odontoblasts were polarized and showed a palisade arrangement in the remaining pulp from...
Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecula... more Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecular mechanisms are involved in the differentiation of odontoblasts. Several studies demonstrated that Krüppel-like factor 4 (KLF4) promotes odontoblast differentiation via control of dentin sialophosphoprotein (DSPP). Because nuclear factor I-C (NFIC) is also known to control DSPP, we investigated the relationship between NFIC and KLF4 during odontoblast differentiation. Klf4 mRNA expression was significantly decreased in Nfic(-/-) pulp cells compared with wild type cells. In immunohistochemistry assays, dentin matrix protein 1 (Dmp1), and DSP protein expression was barely observed in Nfic(-/-) odontoblasts and dentin matrix. Nfic bound directly to the Klf4 promoter and stimulated Klf4 transcriptional activity, thereby regulating Dmp1 and DSPP expression during odontoblast differentiation. Nfic or Klf4 overexpression promoted mineralized nodule formation in MDPC-23 cells. In addition, Nfic...
Tooth development involves sequential interactions between dental epithelial and mesenchymal cell... more Tooth development involves sequential interactions between dental epithelial and mesenchymal cells. Our previous studies demonstrated that preameloblast-conditioned medium (PA-CM) induces the odontogenic differentiation of human dental pulp cells (hDPCs), and the novel protein Cpne7 in PA-CM was suggested as a candidate signaling molecule. In the present study, we investigated biological function and mechanisms of Cpne7 in regulation of odontoblast differentiation. Cpne7 was expressed in preameloblasts and secreted extracellularly during ameloblast differentiation. After secretion, Cpne7 protein was translocated to differentiating odontoblasts. In odontoblasts, Cpne7 promoted odontoblastic markers and the expression of Dspp in vitro. Cpne7 also induced odontoblast differentiation and promoted dentin/pulp-like tissue formation in hDPCs in vivo. Moreover, Cpne7 induced differentiation into odontoblasts of non-dental mesenchymal stem cells in vitro, and promoted formation of dentin-lik...
Purpose The aim of the study was to examine the different morphometric variations of the supraorb... more Purpose The aim of the study was to examine the different morphometric variations of the supraorbital and infraorbital foramina of the facial skeleton on human skulls. Methods Eighty adult human dry skulls were studied. Measurements were made to analyze the degree of variability in the location of the supraorbital and infraorbital foramina. All measurements were done bilaterally. Variations were evaluated according to gender and side. Results There were 54 female and 26 male crania. Almost all mean measurements were longer in males than in females. A statistically significant difference was observed between the left and the right sides in 4 of 10 measurements. When comparing the morphometric measurements between left and right sides of male and female crania, 6 of 22 measurements were statistically higher in men than in women.
In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteobl... more In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes. Interestingly, NFI-C controls postnatal bone formation but does not influence prenatal bone development. We also found decreased NFI-C expression in osteogenic cells from human osteoporotic patients. Notably, transplantation of Nfic-overexpressing BMSCs stimulates osteoblast differentiation and new bone formation, but inhibits adipocyte differentiation by suppressing peroxisome proliferator-activated receptor gamma expression in Nfic 2/2 mice showing an age-related osteoporosis-like phenotype. Finally, NFI-C directly regulates Osterix expression but acts downstream of the bone morphogenetic protein-2-Runx2 pathway. These results suggest that NFI-C acts as a transcriptional switch in cell fate determination between osteoblast and adipocyte differentiation in BMSCs. Therefore, regulation of NFI-C expression in BMSCs could be a novel therapeutic approach for treating agerelated osteoporosis.
Transforming growth factor-b1 (TGF-b1) signaling plays a key role in vertebrate development, home... more Transforming growth factor-b1 (TGF-b1) signaling plays a key role in vertebrate development, homeostasis, and disease. Nuclear factor I-C (NFI-C) has been implicated in TGF-b1 signaling, extracellular matrix gene transcription, and tooth root development. However, the functional relationship between NFI-C and TGF-b1 signaling remains uncharacterized. The purpose of this study was to identify the molecular interactions between NFI-C and TGF-b1 signaling in mouse odontoblasts. Real-time polymerase chain reaction and western analysis demonstrated that NFI-C expression levels were inversely proportional to levels of TGF-b1 signaling molecules during in vitro odontoblast differentiation. Western blot and immunofluorescence results showed that NFI-C was significantly degraded after TGF-b1 addition in odontoblasts, and the formation of the Smad3 complex was essential for NFI-C degradation. Additionally, ubiquitination assay results showed that Smurf1 and Smurf2 induced NFI-C degradation and polyubiquitination in a TGF-b1-dependent manner. Both kinase and in vitro binding assays revealed that the interaction between NFI-C and Smurf1/Smurf2 requires the activation of the mitogenactivated protein kinase pathway by TGF-b1. Moreover, degradation of NFI-C induced by TGF-b1 occurred generally in cell types other than odontoblasts in normal human breast epithelial cells. In contrast, NFI-C induced dephosphorylation of p-Smad2/3. These results show that crosstalk between NFI-C and TGF-b1 signaling regulates cell differentiation and homeostatic processes in odontoblasts, which might constitute a common cellular mechanism.
Periodontitis is a common disease involving inflammation and tissue destruction in the periodonta... more Periodontitis is a common disease involving inflammation and tissue destruction in the periodontal region. Although uncontrolled long-term inflammation in the gingiva may lead to loss of the periodontal ligament, treatments or preventive solutions for periodontitis are scarce. The aim of this study is to find anti-inflammatory material from a natural source that can be used to treat or protect against periodontitis. Daphne species (Thymelaeaceae) are important and popular components of traditional Chinese medicine and are used as anti-inflammatory agents. Daphne jejudoensis is an endemic plant that grows on Jeju Island and was identified as a new species in 2013. In this study, for the first time, we investigated the anti-inflammatory effect of D. jejudoensis leaf extract (DJLE) on human periodontal ligament cells. The gene expression levels of pro-inflammatory cytokines (interleukin-1β and 6 and tumor necrosis factor-α) and inflammation-inducible enzymes (inducible nitric oxide syn...
Epithelial-mesenchymal interaction occurs during development of various tissues, including teeth ... more Epithelial-mesenchymal interaction occurs during development of various tissues, including teeth and bone. Recently, a preameloblast-conditioned medium (PA-CM) from mouse apical bud cells (ABCs), a type of dental epithelial cell, was found to induce odontogenic differentiation of dental pulp stem cells and promote dentin formation. The aims of the present study were to investigate the effects of PA-CM on human bone marrow mesenchymal stem cells (hBMSCs) in vitro, and to investigate the bone regenerative capacity in vivo through epithelial-mesenchymal interactions of developmental osteogenesis. Coculturing with ABCs and PA-CM treatment upregulated osteoblast differentiation markers of hBMSCs compared to cells cultured alone. PA-CM accelerated mineralized nodule formation and also increased bone sialoprotein promoter activity in hBMSCs. PA-CM facilitated the migration of hBMSCs, but did not significantly influence proliferation. PA-CM promoted bone formation of hBMSCs in vivo. Radiogr...
In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important funct... more In order to achieve highly mineralized tooth enamel, enamel proteinases serve the important function of removing the remaining organic matrix in the mineralization and maturation of the enamel matrix. Mutations in the kallikrein 4 (KLK4), enamelysin (MMP20), and WDR72 genes have been identified as causing hypomaturation enamel defects in an autosomal-recessive hereditary pattern. In this report, 2 consanguineous families with a hypomaturation-type enamel defect were recruited, and mutational analysis was performed to determine the molecular genetic etiology of the disease. Whole exome sequencing and autozygosity mapping identified novel homozygous mutations in the KLK4 (c.620_621delCT, p.Ser207Trpfs*38) and MMP20 (c.1054G>A, p.Glu352Lys) genes. Further analysis on the effect of the mutations on the translation, secretion, and function of KLK4 and MMP20 revealed that mutant KLK4 was degraded intracellularly and became inactive while mutant MMP20 was expressed at a normal level but...
This study aimed to measure the thickness of the epithelium and lamina propria of the palatal muc... more This study aimed to measure the thickness of the epithelium and lamina propria of the palatal mucosa and to elucidate the location of the greater palatine artery to provide the anatomical basis for subepithelial connective tissue grafting. Thirty-two maxillary specimens, taken from the canine distal area to the first molar distal area, were embedded in paraffin and stained with hematoxylin-eosin. The thickness of the epithelium and lamina propria of the palatal mucosa was measured at three positions on these specimens, starting from 3 mm below the alveolar crest and in 3-mm intervals. The location of the greater palatine artery was evaluated by using image-processing software. The mean epithelial thickness decreased significantly in the posterior teeth; it was 0.41, 0.36, 0.32, and 0.30 mm in the canine, first premolar, second premolar, and first molar distal areas, respectively. The lamina propria was significantly thicker in the canine distal; it was 1.36, 1.08, 1.09, and 1.05 mm,...
We tested the hypothesis that human glucocorticoid-induced tumor necrosis factor receptor (hGITR/... more We tested the hypothesis that human glucocorticoid-induced tumor necrosis factor receptor (hGITR/TR11) expressed on the surface of activated CD4(+) T cells is responsible for up-regulating the production of matrix metalloproteinase (MMP)-13 by fibroblast-like synoviocytes (FLSs). The level of MMP-13 was measured by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). Expressions of hGITR ligand (hGITRL) on the surface of FLSs and hGITR on the surface of human CD4(+) T cells were analyzed by flow cytometry and RT-PCR. Neutralizing antibodies (Abs) were used to block hGITRL and hGITR on the surface of FLSs and human CD4(+) T cells, respectively. Human CD4(+) T cells were cocultured with FLSs to facilitate interaction between hGITR on CD4(+) T cells and hGITRL on FLSs. Soluble hGITR (shGITR) stimulated FLSs to produce MMP-13, and blockade of hGITRL reduced this effect. Direct contact between activated CD4(+) T and FLSs also induced the production of MMP-13, and neutralization of hGITR on activated CD4(+) T cells during coculture decreased the amount of MMP-13 produced by FLSs. shGITR stimulated FLSs to produce MMP-13 via a signal through hGITRL. Direct contact between activated CD4(+) T cells and FLSs facilitated hGITR-hGITRL interaction, and resulted in inducing MMP-13. This effect may increase tissue destruction in chronic inflammation such as rheumatoid arthritis (RA).
Background: Progression to metastasis is the leading cause of most cancer-related mortality; howe... more Background: Progression to metastasis is the leading cause of most cancer-related mortality; however, much remains to be understood about what facilitates the spread of tumor cells. In the present study, we describe a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness.
The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cel... more The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cells, while that of osteoporosis patients has a larger portion of adipocytes. There is evidence that the epigenetic landscape can strongly influence cell differentiation. We have shown that it is possible to direct the trans-differentiation of adipocytes to osteoblasts by modifying the epigenetic landscape with a DNA methyltransferase inhibitor (DNMTi), 5'-aza-dC, followed by Wnt3a treatment to signal osteogenesis. Treating 3T3-L1 adipocytes with 5'-aza-dC induced demethylation in the hypermethylated CpG regions of bone marker genes; subsequent Wnt3a treatment drove the cells to osteogenic differentiation. When old mice with predominantly adipose marrow were treated with both 5'-aza-dC and Wnt3a, decreased fatty tissue and increased bone volume were observed. Together, our results indicate that epigenetic modification permits direct programming of adipocytes into osteoblasts in...
Odontogenic ameloblast-associated protein (ODAM) has been shown to be specifically expressed in a... more Odontogenic ameloblast-associated protein (ODAM) has been shown to be specifically expressed in ameloblasts and odontoblasts and has been suggested to play a role in the mineralization of the enamel, possibly through the regulation of matrix metalloproteinase 20. However, its function in dentin is not clear. The purpose of this study was to evaluate the effect of ODAM on tertiary dentin formation. MDPC-23 odontoblastic cells were cultured, and the effect of recombinant ODAM (rODAM) on mineralized nodule formation was evaluated. Pinpoint pulp exposures were made in rat teeth and then capped with rODAM mixed with a carrier (rODAM group), carrier only (Carrier group), or white mineral trioxide aggregate (WMTA group). After 1, 2, and 4 weeks, odontoblasts and tertiary dentin were investigated histologically and immunohistochemically. Nodule formation in MDPC-23 cells was enhanced by rODAM treatment. Odontoblasts were polarized and showed a palisade arrangement in the remaining pulp from...
Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecula... more Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecular mechanisms are involved in the differentiation of odontoblasts. Several studies demonstrated that Krüppel-like factor 4 (KLF4) promotes odontoblast differentiation via control of dentin sialophosphoprotein (DSPP). Because nuclear factor I-C (NFIC) is also known to control DSPP, we investigated the relationship between NFIC and KLF4 during odontoblast differentiation. Klf4 mRNA expression was significantly decreased in Nfic(-/-) pulp cells compared with wild type cells. In immunohistochemistry assays, dentin matrix protein 1 (Dmp1), and DSP protein expression was barely observed in Nfic(-/-) odontoblasts and dentin matrix. Nfic bound directly to the Klf4 promoter and stimulated Klf4 transcriptional activity, thereby regulating Dmp1 and DSPP expression during odontoblast differentiation. Nfic or Klf4 overexpression promoted mineralized nodule formation in MDPC-23 cells. In addition, Nfic...
Tooth development involves sequential interactions between dental epithelial and mesenchymal cell... more Tooth development involves sequential interactions between dental epithelial and mesenchymal cells. Our previous studies demonstrated that preameloblast-conditioned medium (PA-CM) induces the odontogenic differentiation of human dental pulp cells (hDPCs), and the novel protein Cpne7 in PA-CM was suggested as a candidate signaling molecule. In the present study, we investigated biological function and mechanisms of Cpne7 in regulation of odontoblast differentiation. Cpne7 was expressed in preameloblasts and secreted extracellularly during ameloblast differentiation. After secretion, Cpne7 protein was translocated to differentiating odontoblasts. In odontoblasts, Cpne7 promoted odontoblastic markers and the expression of Dspp in vitro. Cpne7 also induced odontoblast differentiation and promoted dentin/pulp-like tissue formation in hDPCs in vivo. Moreover, Cpne7 induced differentiation into odontoblasts of non-dental mesenchymal stem cells in vitro, and promoted formation of dentin-lik...
Purpose The aim of the study was to examine the different morphometric variations of the supraorb... more Purpose The aim of the study was to examine the different morphometric variations of the supraorbital and infraorbital foramina of the facial skeleton on human skulls. Methods Eighty adult human dry skulls were studied. Measurements were made to analyze the degree of variability in the location of the supraorbital and infraorbital foramina. All measurements were done bilaterally. Variations were evaluated according to gender and side. Results There were 54 female and 26 male crania. Almost all mean measurements were longer in males than in females. A statistically significant difference was observed between the left and the right sides in 4 of 10 measurements. When comparing the morphometric measurements between left and right sides of male and female crania, 6 of 22 measurements were statistically higher in men than in women.
In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteobl... more In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes. Interestingly, NFI-C controls postnatal bone formation but does not influence prenatal bone development. We also found decreased NFI-C expression in osteogenic cells from human osteoporotic patients. Notably, transplantation of Nfic-overexpressing BMSCs stimulates osteoblast differentiation and new bone formation, but inhibits adipocyte differentiation by suppressing peroxisome proliferator-activated receptor gamma expression in Nfic 2/2 mice showing an age-related osteoporosis-like phenotype. Finally, NFI-C directly regulates Osterix expression but acts downstream of the bone morphogenetic protein-2-Runx2 pathway. These results suggest that NFI-C acts as a transcriptional switch in cell fate determination between osteoblast and adipocyte differentiation in BMSCs. Therefore, regulation of NFI-C expression in BMSCs could be a novel therapeutic approach for treating agerelated osteoporosis.
Transforming growth factor-b1 (TGF-b1) signaling plays a key role in vertebrate development, home... more Transforming growth factor-b1 (TGF-b1) signaling plays a key role in vertebrate development, homeostasis, and disease. Nuclear factor I-C (NFI-C) has been implicated in TGF-b1 signaling, extracellular matrix gene transcription, and tooth root development. However, the functional relationship between NFI-C and TGF-b1 signaling remains uncharacterized. The purpose of this study was to identify the molecular interactions between NFI-C and TGF-b1 signaling in mouse odontoblasts. Real-time polymerase chain reaction and western analysis demonstrated that NFI-C expression levels were inversely proportional to levels of TGF-b1 signaling molecules during in vitro odontoblast differentiation. Western blot and immunofluorescence results showed that NFI-C was significantly degraded after TGF-b1 addition in odontoblasts, and the formation of the Smad3 complex was essential for NFI-C degradation. Additionally, ubiquitination assay results showed that Smurf1 and Smurf2 induced NFI-C degradation and polyubiquitination in a TGF-b1-dependent manner. Both kinase and in vitro binding assays revealed that the interaction between NFI-C and Smurf1/Smurf2 requires the activation of the mitogenactivated protein kinase pathway by TGF-b1. Moreover, degradation of NFI-C induced by TGF-b1 occurred generally in cell types other than odontoblasts in normal human breast epithelial cells. In contrast, NFI-C induced dephosphorylation of p-Smad2/3. These results show that crosstalk between NFI-C and TGF-b1 signaling regulates cell differentiation and homeostatic processes in odontoblasts, which might constitute a common cellular mechanism.
Uploads
Papers by Dong-seol Lee