Papers by Artik Elisa Angkawijaya
Asia-Pacific Journal of Chemical Engineering
Biomass Conversion and Biorefinery
Environmental Nanotechnology, Monitoring & Management
Journal of Molecular Liquids

Scientific Reports
A greener route to synthesize mesoporous copper–gallic acid metal–organic framework (CuGA MOF) th... more A greener route to synthesize mesoporous copper–gallic acid metal–organic framework (CuGA MOF) than the conventional method using harmful DMF solvent was proposed in this study. Various synthesis attempts were conducted by modifying the synthesis conditions to produce CuGA MOF with comparable physical properties to a reference material (DMF-synthesized CuGA NMOF). The independent variables investigated include the molar ratio of NaOH to GA (1.1 to 4.4) and the synthesis temperature (30, 60, 90 °C). It was found that proper NaOH addition was crucial for suppressing the generation of copper oxide while maximizing the formation of CuGA MOF. On the other hand, the reaction temperature mainly affected the stability and adsorption potential of CuGA MOF. Reacting Cu, GA, and NaOH at a molar ratio of 1:1:2.2 and a temperature of 90 °C, produced mesoporous MOF (CuGA 90–2.2) with a surface area of 198.22 m2/g, a pore diameter of 8.6 nm, and a thermal stability of 219 °C. This MOF exhibited an...

Fine Chemical Engineering
Nanocrystalline cellulose (NC) is a cellulose derivative product that has attracted a lot of atte... more Nanocrystalline cellulose (NC) is a cellulose derivative product that has attracted a lot of attention because of its versatile applications, one of which is in adsorption. In this study, NC was prepared through H2SO4-hydrolysis of filter paper. Several physical characterizations were employed to confirm the formation of the NC nanoparticles, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and Fourier transform infrared spectroscopy (FTIR). The nano-rod-shaped NC particles, with an average particle length of 255 nm, were observed from the electron micrographs. The resemblance characteristic of NC with cellulose was demonstrated from the occurrence of XRD peaks at (110) and (200) lattice plane. The FTIR bands’ spectra of the NC are similar to that of the reported literature. The NC was utilized as the adsorbent for the removal of cobalt ions in the synthetic solution. The effect of pH on the removal of cobalt ion...
Journal of Materials Science
Waste and Biomass Valorization
Plant Physiology, Mar 23, 2020
Four choline/ethanolamine kinases have distinct enzymatic functions in plant development and the ... more Four choline/ethanolamine kinases have distinct enzymatic functions in plant development and the metabolism of choline/ethanolamine in Arabidopsis.
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering

Biochemical and Biophysical Research Communications
Phosphate-starved plants reduce phosphatidylcholine content presumably to provide an internal pho... more Phosphate-starved plants reduce phosphatidylcholine content presumably to provide an internal phosphate source while replacing membrane phospholipids by galactolipids, a process termed membrane lipid remodeling. However, whether the metabolic fate of released phosphocholine is a phosphate source remains elusive because primary phosphocholine phosphatases in vivo are unknown in seed plants. Here, we show that PECP1 and PS2 are the primary phosphocholine phosphatases in Arabidopsis and function redundantly under phosphate starvation. Under phosphate starvation, the double knockout mutant of PECP1 and PS2 showed reduced content of choline but no severe growth phenotype, which suggests that phosphocholine dephosphorylation is not likely a major source of internal phosphate reserve. We identified primary phosphocholine phosphatases, demonstrated their involvement under phosphate starvation, and updated the metabolic map of membrane lipid remodeling.
Uploads
Papers by Artik Elisa Angkawijaya