Select Keywords: Select Authors:
Select Year:

Adversarial Examples are Misaligned in Diffusion Model Manifolds

January 12, 2024 Peter Lorenz, Ricard Durall, Jansi Keuper

cs.CV, cs.CR

In recent years, diffusion models (DMs) have drawn significant attention for their success in approximating data distributions, yielding state-of-the-art generative results. Nevertheless, the versatility of these models extends beyond their generative capabilities to encompass various vision applications, such as image inpainting, segmentation, adversarial robustness, among others. This study is dedicated to the investigation of adversarial attacks through the lens of diffusion models. However, our objective does not involve enhancing the adversarial robustness of image classifiers. Instead, our focus lies in utilizing the diffusion model to detect and analyze the anomalies introduced by these attacks on images. To that end, we systematically examine the alignment of the distributions of adversarial examples when subjected to the process of transformation using diffusion models. The efficacy of this approach is assessed across CIFAR-10 and ImageNet datasets, including varying image sizes in the latter. The results demonstrate a notable capacity to discriminate effectively between benign and attacked images, providing compelling evidence that adversarial instances do not align with the learned manifold of the DMs.

Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo

January 12, 2024 Xunpeng Huang, Difan Zou, Hanze Dong, Yian Ma, Tong Zhang

stat.ML, cs.LG, math.OC, stat.CO

To sample from a general target distribution $p_\propto e^{-f_}$ beyond the isoperimetric condition, Huang et al. (2023) proposed to perform sampling through reverse diffusion, giving rise to Diffusion-based Monte Carlo (DMC). Specifically, DMC follows the reverse SDE of a diffusion process that transforms the target distribution to the standard Gaussian, utilizing a non-parametric score estimation. However, the original DMC algorithm encountered high gradient complexity, resulting in an exponential dependency on the error tolerance $\epsilon$ of the obtained samples. In this paper, we demonstrate that the high complexity of DMC originates from its redundant design of score estimation, and proposed a more efficient algorithm, called RS-DMC, based on a novel recursive score estimation method. In particular, we first divide the entire diffusion process into multiple segments and then formulate the score estimation step (at any time step) as a series of interconnected mean estimation and sampling subproblems accordingly, which are correlated in a recursive manner. Importantly, we show that with a proper design of the segment decomposition, all sampling subproblems will only need to tackle a strongly log-concave distribution, which can be very efficient to solve using the Langevin-based samplers with a provably rapid convergence rate. As a result, we prove that the gradient complexity of RS-DMC only has a quasi-polynomial dependency on $\epsilon$, which significantly improves exponential gradient complexity in Huang et al. (2023). Furthermore, under commonly used dissipative conditions, our algorithm is provably much faster than the popular Langevin-based algorithms. Our algorithm design and theoretical framework illuminate a novel direction for addressing sampling problems, which could be of broader applicability in the community.

Demystifying Variational Diffusion Models

January 11, 2024 Fabio De Sousa Ribeiro, Ben Glocker

cs.LG, cs.CV

Despite the growing popularity of diffusion models, gaining a deep understanding of the model class remains somewhat elusive for the uninitiated in non-equilibrium statistical physics. With that in mind, we present what we believe is a more straightforward introduction to diffusion models using directed graphical modelling and variational Bayesian principles, which imposes relatively fewer prerequisites on the average reader. Our exposition constitutes a comprehensive technical review spanning from foundational concepts like deep latent variable models to recent advances in continuous-time diffusion-based modelling, highlighting theoretical connections between model classes along the way. We provide additional mathematical insights that were omitted in the seminal works whenever possible to aid in understanding, while avoiding the introduction of new notation. We envision this article serving as a useful educational supplement for both researchers and practitioners in the area, and we welcome feedback and contributions from the community at https://github.com/biomedia-mira/demystifying-diffusion.

FedTabDiff: Federated Learning of Diffusion Probabilistic Models for Synthetic Mixed-Type Tabular Data Generation

January 11, 2024 Timur Sattarov, Marco Schreyer, Damian Borth

cs.LG

Realistic synthetic tabular data generation encounters significant challenges in preserving privacy, especially when dealing with sensitive information in domains like finance and healthcare. In this paper, we introduce \textit{Federated Tabular Diffusion} (FedTabDiff) for generating high-fidelity mixed-type tabular data without centralized access to the original tabular datasets. Leveraging the strengths of \textit{Denoising Diffusion Probabilistic Models} (DDPMs), our approach addresses the inherent complexities in tabular data, such as mixed attribute types and implicit relationships. More critically, FedTabDiff realizes a decentralized learning scheme that permits multiple entities to collaboratively train a generative model while respecting data privacy and locality. We extend DDPMs into the federated setting for tabular data generation, which includes a synchronous update scheme and weighted averaging for effective model aggregation. Experimental evaluations on real-world financial and medical datasets attest to the framework’s capability to produce synthetic data that maintains high fidelity, utility, privacy, and coverage.

Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation

January 09, 2024 Xiyi Chen, Marko Mihajlovic, Shaofei Wang, Sergey Prokudin, Siyu Tang

cs.CV, cs.AI

Recent advances in generative diffusion models have enabled the previously unfeasible capability of generating 3D assets from a single input image or a text prompt. In this work, we aim to enhance the quality and functionality of these models for the task of creating controllable, photorealistic human avatars. We achieve this by integrating a 3D morphable model into the state-of-the-art multiview-consistent diffusion approach. We demonstrate that accurate conditioning of a generative pipeline on the articulated 3D model enhances the baseline model performance on the task of novel view synthesis from a single image. More importantly, this integration facilitates a seamless and accurate incorporation of facial expression and body pose control into the generation process. To the best of our knowledge, our proposed framework is the first diffusion model to enable the creation of fully 3D-consistent, animatable, and photorealistic human avatars from a single image of an unseen subject; extensive quantitative and qualitative evaluations demonstrate the advantages of our approach over existing state-of-the-art avatar creation models on both novel view and novel expression synthesis tasks.

EmoGen: Emotional Image Content Generation with Text-to-Image Diffusion Models

January 09, 2024 Jingyuan Yang, Jiawei Feng, Hui Huang

cs.CV

Recent years have witnessed remarkable progress in image generation task, where users can create visually astonishing images with high-quality. However, existing text-to-image diffusion models are proficient in generating concrete concepts (dogs) but encounter challenges with more abstract ones (emotions). Several efforts have been made to modify image emotions with color and style adjustments, facing limitations in effectively conveying emotions with fixed image contents. In this work, we introduce Emotional Image Content Generation (EICG), a new task to generate semantic-clear and emotion-faithful images given emotion categories. Specifically, we propose an emotion space and construct a mapping network to align it with the powerful Contrastive Language-Image Pre-training (CLIP) space, providing a concrete interpretation of abstract emotions. Attribute loss and emotion confidence are further proposed to ensure the semantic diversity and emotion fidelity of the generated images. Our method outperforms the state-of-the-art text-to-image approaches both quantitatively and qualitatively, where we derive three custom metrics, i.e., emotion accuracy, semantic clarity and semantic diversity. In addition to generation, our method can help emotion understanding and inspire emotional art design.

Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models

January 09, 2024 Xuewen Liu, Zhikai Li, Junrui Xiao, Qingyi Gu

cs.CV, cs.LG

Diffusion models have achieved great success in image generation tasks through iterative noise estimation. However, the heavy denoising process and complex neural networks hinder their low-latency applications in real-world scenarios. Quantization can effectively reduce model complexity, and post-training quantization (PTQ), which does not require fine-tuning, is highly promising in accelerating the denoising process. Unfortunately, we find that due to the highly dynamic distribution of activations in different denoising steps, existing PTQ methods for diffusion models suffer from distribution mismatch issues at both calibration sample level and reconstruction output level, which makes the performance far from satisfactory, especially in low-bit cases. In this paper, we propose Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models (EDA-DM) to address the above issues. Specifically, at the calibration sample level, we select calibration samples based on the density and diversity in the latent space, thus facilitating the alignment of their distribution with the overall samples; and at the reconstruction output level, we propose Fine-grained Block Reconstruction, which can align the outputs of the quantized model and the full-precision model at different network granularity. Extensive experiments demonstrate that EDA-DM outperforms the existing post-training quantization frameworks in both unconditional and conditional generation scenarios. At low-bit precision, the quantized models with our method even outperform the full-precision models on most datasets.

Stable generative modeling using diffusion maps

January 09, 2024 Georg Gottwald, Fengyi Li, Youssef Marzouk, Sebastian Reich

stat.ML, cs.LG, cs.NA, math.NA, stat.CO

We consider the problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. Such settings have recently drawn considerable interest in the context of generative modelling. In this paper, we propose a generative model combining diffusion maps and Langevin dynamics. Diffusion maps are used to approximate the drift term from the available training samples, which is then implemented in a discrete-time Langevin sampler to generate new samples. By setting the kernel bandwidth to match the time step size used in the unadjusted Langevin algorithm, our method effectively circumvents any stability issues typically associated with time-stepping stiff stochastic differential equations. More precisely, we introduce a novel split-step scheme, ensuring that the generated samples remain within the convex hull of the training samples. Our framework can be naturally extended to generate conditional samples. We demonstrate the performance of our proposed scheme through experiments on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem.

D3PRefiner: A Diffusion-based Denoise Method for 3D Human Pose Refinement

January 08, 2024 Danqi Yan, Qing Gao, Yuepeng Qian, Xinxing Chen, Chenglong Fu, Yuquan Leng

cs.CV

Three-dimensional (3D) human pose estimation using a monocular camera has gained increasing attention due to its ease of implementation and the abundance of data available from daily life. However, owing to the inherent depth ambiguity in images, the accuracy of existing monocular camera-based 3D pose estimation methods remains unsatisfactory, and the estimated 3D poses usually include much noise. By observing the histogram of this noise, we find each dimension of the noise follows a certain distribution, which indicates the possibility for a neural network to learn the mapping between noisy poses and ground truth poses. In this work, in order to obtain more accurate 3D poses, a Diffusion-based 3D Pose Refiner (D3PRefiner) is proposed to refine the output of any existing 3D pose estimator. We first introduce a conditional multivariate Gaussian distribution to model the distribution of noisy 3D poses, using paired 2D poses and noisy 3D poses as conditions to achieve greater accuracy. Additionally, we leverage the architecture of current diffusion models to convert the distribution of noisy 3D poses into ground truth 3D poses. To evaluate the effectiveness of the proposed method, two state-of-the-art sequence-to-sequence 3D pose estimators are used as basic 3D pose estimation models, and the proposed method is evaluated on different types of 2D poses and different lengths of the input sequence. Experimental results demonstrate the proposed architecture can significantly improve the performance of current sequence-to-sequence 3D pose estimators, with a reduction of at least 10.3% in the mean per joint position error (MPJPE) and at least 11.0% in the Procrustes MPJPE (P-MPJPE).

Reflected Schrödinger Bridge for Constrained Generative Modeling

January 06, 2024 Wei Deng, Yu Chen, Nicole Tianjiao Yang, Hengrong Du, Qi Feng, Ricky T. Q. Chen

stat.ML, cs.LG

Diffusion models have become the go-to method for large-scale generative models in real-world applications. These applications often involve data distributions confined within bounded domains, typically requiring ad-hoc thresholding techniques for boundary enforcement. Reflected diffusion models (Lou23) aim to enhance generalizability by generating the data distribution through a backward process governed by reflected Brownian motion. However, reflected diffusion models may not easily adapt to diverse domains without the derivation of proper diffeomorphic mappings and do not guarantee optimal transport properties. To overcome these limitations, we introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored for generating data within diverse bounded domains. We derive elegant reflected forward-backward stochastic differential equations with Neumann and Robin boundary conditions, extend divergence-based likelihood training to bounded domains, and explore natural connections to entropic optimal transport for the study of approximate linear convergence - a valuable insight for practical training. Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks.

MirrorDiffusion: Stabilizing Diffusion Process in Zero-shot Image Translation by Prompts Redescription and Beyond

January 06, 2024 Yupei Lin, Xiaoyu Xian, Yukai Shi, Liang Lin

cs.CV, cs.AI

Recently, text-to-image diffusion models become a new paradigm in image processing fields, including content generation, image restoration and image-to-image translation. Given a target prompt, Denoising Diffusion Probabilistic Models (DDPM) are able to generate realistic yet eligible images. With this appealing property, the image translation task has the potential to be free from target image samples for supervision. By using a target text prompt for domain adaption, the diffusion model is able to implement zero-shot image-to-image translation advantageously. However, the sampling and inversion processes of DDPM are stochastic, and thus the inversion process often fail to reconstruct the input content. Specifically, the displacement effect will gradually accumulated during the diffusion and inversion processes, which led to the reconstructed results deviating from the source domain. To make reconstruction explicit, we propose a prompt redescription strategy to realize a mirror effect between the source and reconstructed image in the diffusion model (MirrorDiffusion). More specifically, a prompt redescription mechanism is investigated to align the text prompts with latent code at each time step of the Denoising Diffusion Implicit Models (DDIM) inversion to pursue a structure-preserving reconstruction. With the revised DDIM inversion, MirrorDiffusion is able to realize accurate zero-shot image translation by editing optimized text prompts and latent code. Extensive experiments demonstrate that MirrorDiffusion achieves superior performance over the state-of-the-art methods on zero-shot image translation benchmarks by clear margins and practical model stability.

An Event-Oriented Diffusion-Refinement Method for Sparse Events Completion

January 06, 2024 Bo Zhang, Yuqi Han, Jinli Suo, Qionghai Dai

cs.CV

Event cameras or dynamic vision sensors (DVS) record asynchronous response to brightness changes instead of conventional intensity frames, and feature ultra-high sensitivity at low bandwidth. The new mechanism demonstrates great advantages in challenging scenarios with fast motion and large dynamic range. However, the recorded events might be highly sparse due to either limited hardware bandwidth or extreme photon starvation in harsh environments. To unlock the full potential of event cameras, we propose an inventive event sequence completion approach conforming to the unique characteristics of event data in both the processing stage and the output form. Specifically, we treat event streams as 3D event clouds in the spatiotemporal domain, develop a diffusion-based generative model to generate dense clouds in a coarse-to-fine manner, and recover exact timestamps to maintain the temporal resolution of raw data successfully. To validate the effectiveness of our method comprehensively, we perform extensive experiments on three widely used public datasets with different spatial resolutions, and additionally collect a novel event dataset covering diverse scenarios with highly dynamic motions and under harsh illumination. Besides generating high-quality dense events, our method can benefit downstream applications such as object classification and intensity frame reconstruction.

Fair Sampling in Diffusion Models through Switching Mechanism

January 06, 2024 Yujin Choi, Jinseong Park, Hoki Kim, Jaewook Lee, Saeroom Park

cs.LG, cs.CY

Diffusion models have shown their effectiveness in generation tasks by well-approximating the underlying probability distribution. However, diffusion models are known to suffer from an amplified inherent bias from the training data in terms of fairness. While the sampling process of diffusion models can be controlled by conditional guidance, previous works have attempted to find empirical guidance to achieve quantitative fairness. To address this limitation, we propose a fairness-aware sampling method called \textit{attribute switching} mechanism for diffusion models. Without additional training, the proposed sampling can obfuscate sensitive attributes in generated data without relying on classifiers. We mathematically prove and experimentally demonstrate the effectiveness of the proposed method on two key aspects: (i) the generation of fair data and (ii) the preservation of the utility of the generated data.

SAR Despeckling via Regional Denoising Diffusion Probabilistic Model

January 06, 2024 Xuran Hu, Ziqiang Xu, Zhihan Chen, Zhengpeng Feng, Mingzhe Zhu, LJubisa Stankovic

cs.CV, eess.IV, I.4.4

Speckle noise poses a significant challenge in maintaining the quality of synthetic aperture radar (SAR) images, so SAR despeckling techniques have drawn increasing attention. Despite the tremendous advancements of deep learning in fixed-scale SAR image despeckling, these methods still struggle to deal with large-scale SAR images. To address this problem, this paper introduces a novel despeckling approach termed Region Denoising Diffusion Probabilistic Model (R-DDPM) based on generative models. R-DDPM enables versatile despeckling of SAR images across various scales, accomplished within a single training session. Moreover, The artifacts in the fused SAR images can be avoided effectively with the utilization of region-guided inverse sampling. Experiments of our proposed R-DDPM on Sentinel-1 data demonstrates superior performance to existing methods.

Latte: Latent Diffusion Transformer for Video Generation

January 05, 2024 Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, Yu Qiao

cs.CV

We propose a novel Latent Diffusion Transformer, namely Latte, for video generation. Latte first extracts spatio-temporal tokens from input videos and then adopts a series of Transformer blocks to model video distribution in the latent space. In order to model a substantial number of tokens extracted from videos, four efficient variants are introduced from the perspective of decomposing the spatial and temporal dimensions of input videos. To improve the quality of generated videos, we determine the best practices of Latte through rigorous experimental analysis, including video clip patch embedding, model variants, timestep-class information injection, temporal positional embedding, and learning strategies. Our comprehensive evaluation demonstrates that Latte achieves state-of-the-art performance across four standard video generation datasets, i.e., FaceForensics, SkyTimelapse, UCF101, and Taichi-HD. In addition, we extend Latte to text-to-video generation (T2V) task, where Latte achieves comparable results compared to recent T2V models. We strongly believe that Latte provides valuable insights for future research on incorporating Transformers into diffusion models for video generation.

The Rise of Diffusion Models in Time-Series Forecasting

January 05, 2024 Caspar Meijer, Lydia Y. Chen

cs.LG, cs.AI

This survey delves into the application of diffusion models in time-series forecasting. Diffusion models are demonstrating state-of-the-art results in various fields of generative AI. The paper includes comprehensive background information on diffusion models, detailing their conditioning methods and reviewing their use in time-series forecasting. The analysis covers 11 specific time-series implementations, the intuition and theory behind them, the effectiveness on different datasets, and a comparison among each other. Key contributions of this work are the thorough exploration of diffusion models’ applications in time-series forecasting and a chronologically ordered overview of these models. Additionally, the paper offers an insightful discussion on the current state-of-the-art in this domain and outlines potential future research directions. This serves as a valuable resource for researchers in AI and time-series analysis, offering a clear view of the latest advancements and future potential of diffusion models.

Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors

January 05, 2024 Top Piriyakulkij, Yingheng Wang, Volodymyr Kuleshov

cs.LG, q-bio.QM, stat.ML

We propose denoising diffusion variational inference (DDVI), an approximate inference algorithm for latent variable models which relies on diffusion models as expressive variational posteriors. Our method augments variational posteriors with auxiliary latents, which yields an expressive class of models that perform diffusion in latent space by reversing a user-specified noising process. We fit these models by optimizing a novel lower bound on the marginal likelihood inspired by the wake-sleep algorithm. Our method is easy to implement (it fits a regularized extension of the ELBO), is compatible with black-box variational inference, and outperforms alternative classes of approximate posteriors based on normalizing flows or adversarial networks. When applied to deep latent variable models, our method yields the denoising diffusion VAE (DD-VAE) algorithm. We use this algorithm on a motivating task in biology – inferring latent ancestry from human genomes – outperforming strong baselines on the Thousand Genomes dataset.

Progressive Knowledge Distillation Of Stable Diffusion XL Using Layer Level Loss

January 05, 2024 Yatharth Gupta, Vishnu V. Jaddipal, Harish Prabhala, Sayak Paul, Patrick Von Platen

cs.CV, cs.AI

Stable Diffusion XL (SDXL) has become the best open source text-to-image model (T2I) for its versatility and top-notch image quality. Efficiently addressing the computational demands of SDXL models is crucial for wider reach and applicability. In this work, we introduce two scaled-down variants, Segmind Stable Diffusion (SSD-1B) and Segmind-Vega, with 1.3B and 0.74B parameter UNets, respectively, achieved through progressive removal using layer-level losses focusing on reducing the model size while preserving generative quality. We release these models weights at https://hf.co/Segmind. Our methodology involves the elimination of residual networks and transformer blocks from the U-Net structure of SDXL, resulting in significant reductions in parameters, and latency. Our compact models effectively emulate the original SDXL by capitalizing on transferred knowledge, achieving competitive results against larger multi-billion parameter SDXL. Our work underscores the efficacy of knowledge distillation coupled with layer-level losses in reducing model size while preserving the high-quality generative capabilities of SDXL, thus facilitating more accessible deployment in resource-constrained environments.

Bring Metric Functions into Diffusion Models

January 04, 2024 Jie An, Zhengyuan Yang, Jianfeng Wang, Linjie Li, Zicheng Liu, Lijuan Wang, Jiebo Luo

cs.CV

We introduce a Cascaded Diffusion Model (Cas-DM) that improves a Denoising Diffusion Probabilistic Model (DDPM) by effectively incorporating additional metric functions in training. Metric functions such as the LPIPS loss have been proven highly effective in consistency models derived from the score matching. However, for the diffusion counterparts, the methodology and efficacy of adding extra metric functions remain unclear. One major challenge is the mismatch between the noise predicted by a DDPM at each step and the desired clean image that the metric function works well on. To address this problem, we propose Cas-DM, a network architecture that cascades two network modules to effectively apply metric functions to the diffusion model training. The first module, similar to a standard DDPM, learns to predict the added noise and is unaffected by the metric function. The second cascaded module learns to predict the clean image, thereby facilitating the metric function computation. Experiment results show that the proposed diffusion model backbone enables the effective use of the LPIPS loss, leading to state-of-the-art image quality (FID, sFID, IS) on various established benchmarks.

Energy based diffusion generator for efficient sampling of Boltzmann distributions

January 04, 2024 Yan Wang, Ling Guo, Hao Wu, Tao Zhou

cs.LG, stat.CO, stat.ML

We introduce a novel sampler called the energy based diffusion generator for generating samples from arbitrary target distributions. The sampling model employs a structure similar to a variational autoencoder, utilizing a decoder to transform latent variables from a simple distribution into random variables approximating the target distribution, and we design an encoder based on the diffusion model. Leveraging the powerful modeling capacity of the diffusion model for complex distributions, we can obtain an accurate variational estimate of the Kullback-Leibler divergence between the distributions of the generated samples and the target. Moreover, we propose a decoder based on generalized Hamiltonian dynamics to further enhance sampling performance. Through empirical evaluation, we demonstrate the effectiveness of our method across various complex distribution functions, showcasing its superiority compared to existing methods.

Improving Diffusion-Based Image Synthesis with Context Prediction

January 04, 2024 Ling Yang, Jingwei Liu, Shenda Hong, Zhilong Zhang, Zhilin Huang, Zheming Cai, Wentao Zhang, Bin Cui

cs.CV

Diffusion models are a new class of generative models, and have dramatically promoted image generation with unprecedented quality and diversity. Existing diffusion models mainly try to reconstruct input image from a corrupted one with a pixel-wise or feature-wise constraint along spatial axes. However, such point-based reconstruction may fail to make each predicted pixel/feature fully preserve its neighborhood context, impairing diffusion-based image synthesis. As a powerful source of automatic supervisory signal, context has been well studied for learning representations. Inspired by this, we for the first time propose ConPreDiff to improve diffusion-based image synthesis with context prediction. We explicitly reinforce each point to predict its neighborhood context (i.e., multi-stride features/tokens/pixels) with a context decoder at the end of diffusion denoising blocks in training stage, and remove the decoder for inference. In this way, each point can better reconstruct itself by preserving its semantic connections with neighborhood context. This new paradigm of ConPreDiff can generalize to arbitrary discrete and continuous diffusion backbones without introducing extra parameters in sampling procedure. Extensive experiments are conducted on unconditional image generation, text-to-image generation and image inpainting tasks. Our ConPreDiff consistently outperforms previous methods and achieves a new SOTA text-to-image generation results on MS-COCO, with a zero-shot FID score of 6.21.

CoMoSVC: Consistency Model-based Singing Voice Conversion

January 03, 2024 Yiwen Lu, Zhen Ye, Wei Xue, Xu Tan, Qifeng Liu, Yike Guo

eess.AS, cs.AI, cs.LG, cs.SD

The diffusion-based Singing Voice Conversion (SVC) methods have achieved remarkable performances, producing natural audios with high similarity to the target timbre. However, the iterative sampling process results in slow inference speed, and acceleration thus becomes crucial. In this paper, we propose CoMoSVC, a consistency model-based SVC method, which aims to achieve both high-quality generation and high-speed sampling. A diffusion-based teacher model is first specially designed for SVC, and a student model is further distilled under self-consistency properties to achieve one-step sampling. Experiments on a single NVIDIA GTX4090 GPU reveal that although CoMoSVC has a significantly faster inference speed than the state-of-the-art (SOTA) diffusion-based SVC system, it still achieves comparable or superior conversion performance based on both subjective and objective metrics. Audio samples and codes are available at https://comosvc.github.io/.

DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models

January 03, 2024 Yichen Liu, Huajian Zhang, Daqing Gao

cs.CV, 68T45, I.2.10

Object detection models represented by YOLO series have been widely used and have achieved great results on the high quality datasets, but not all the working conditions are ideal. To settle down the problem of locating targets on low quality datasets, the existing methods either train a new object detection network, or need a large collection of low-quality datasets to train. However, we propose a framework in this paper and apply it on the YOLO models called DiffYOLO. Specifically, we extract feature maps from the denoising diffusion probabilistic models to enhance the well-trained models, which allows us fine-tune YOLO on high-quality datasets and test on low-quality datasets. The results proved this framework can not only prove the performance on noisy datasets, but also prove the detection results on high-quality test datasets. We will supplement more experiments later (with various datasets and network architectures).

DDPM based X-ray Image Synthesizer

January 03, 2024 Praveen Mahaulpatha, Thulana Abeywardane, Tomson George

eess.IV, cs.CV

Access to high-quality datasets in the medical industry limits machine learning model performance. To address this issue, we propose a Denoising Diffusion Probabilistic Model (DDPM) combined with a UNet architecture for X-ray image synthesis. Focused on pneumonia medical condition, our methodology employs over 3000 pneumonia X-ray images obtained from Kaggle for training. Results demonstrate the effectiveness of our approach, as the model successfully generated realistic images with low Mean Squared Error (MSE). The synthesized images showed distinct differences from non-pneumonia images, highlighting the model’s ability to capture key features of positive cases. Beyond pneumonia, the applications of this synthesizer extend to various medical conditions, provided an ample dataset is available. The capability to produce high-quality images can potentially enhance machine learning models’ performance, aiding in more accurate and efficient medical diagnoses. This innovative DDPM-based X-ray photo synthesizer presents a promising avenue for addressing the scarcity of positive medical image datasets, paving the way for improved medical image analysis and diagnosis in the healthcare industry.

S2-DMs:Skip-Step Diffusion Models

January 03, 2024 Yixuan Wang, Shuangyin Li

cs.CV, cs.LG, eess.IV

Diffusion models have emerged as powerful generative tools, rivaling GANs in sample quality and mirroring the likelihood scores of autoregressive models. A subset of these models, exemplified by DDIMs, exhibit an inherent asymmetry: they are trained over $T$ steps but only sample from a subset of $T$ during generation. This selective sampling approach, though optimized for speed, inadvertently misses out on vital information from the unsampled steps, leading to potential compromises in sample quality. To address this issue, we present the S$^{2}$-DMs, which is a new training method by using an innovative $L_{skip}$, meticulously designed to reintegrate the information omitted during the selective sampling phase. The benefits of this approach are manifold: it notably enhances sample quality, is exceptionally simple to implement, requires minimal code modifications, and is flexible enough to be compatible with various sampling algorithms. On the CIFAR10 dataset, models trained using our algorithm showed an improvement of 3.27% to 14.06% over models trained with traditional methods across various sampling algorithms (DDIMs, PNDMs, DEIS) and different numbers of sampling steps (10, 20, …, 1000). On the CELEBA dataset, the improvement ranged from 8.97% to 27.08%. Access to the code and additional resources is provided in the github.

Auffusion: Leveraging the Power of Diffusion and Large Language Models for Text-to-Audio Generation

January 02, 2024 Jinlong Xue, Yayue Deng, Yingming Gao, Ya Li

cs.SD, cs.AI, cs.CL, eess.AS

Recent advancements in diffusion models and large language models (LLMs) have significantly propelled the field of AIGC. Text-to-Audio (TTA), a burgeoning AIGC application designed to generate audio from natural language prompts, is attracting increasing attention. However, existing TTA studies often struggle with generation quality and text-audio alignment, especially for complex textual inputs. Drawing inspiration from state-of-the-art Text-to-Image (T2I) diffusion models, we introduce Auffusion, a TTA system adapting T2I model frameworks to TTA task, by effectively leveraging their inherent generative strengths and precise cross-modal alignment. Our objective and subjective evaluations demonstrate that Auffusion surpasses previous TTA approaches using limited data and computational resource. Furthermore, previous studies in T2I recognizes the significant impact of encoder choice on cross-modal alignment, like fine-grained details and object bindings, while similar evaluation is lacking in prior TTA works. Through comprehensive ablation studies and innovative cross-attention map visualizations, we provide insightful assessments of text-audio alignment in TTA. Our findings reveal Auffusion’s superior capability in generating audios that accurately match textual descriptions, which further demonstrated in several related tasks, such as audio style transfer, inpainting and other manipulations. Our implementation and demos are available at https://auffusion.github.io.

DiffAugment: Diffusion based Long-Tailed Visual Relationship Recognition

January 01, 2024 Parul Gupta, Tuan Nguyen, Abhinav Dhall, Munawar Hayat, Trung Le, Thanh-Toan Do

cs.CV

The task of Visual Relationship Recognition (VRR) aims to identify relationships between two interacting objects in an image and is particularly challenging due to the widely-spread and highly imbalanced distribution of <subject, relation, object> triplets. To overcome the resultant performance bias in existing VRR approaches, we introduce DiffAugment – a method which first augments the tail classes in the linguistic space by making use of WordNet and then utilizes the generative prowess of Diffusion Models to expand the visual space for minority classes. We propose a novel hardness-aware component in diffusion which is based upon the hardness of each <S,R,O> triplet and demonstrate the effectiveness of hardness-aware diffusion in generating visual embeddings for the tail classes. We also propose a novel subject and object based seeding strategy for diffusion sampling which improves the discriminative capability of the generated visual embeddings. Extensive experimentation on the GQA-LT dataset shows favorable gains in the subject/object and relation average per-class accuracy using Diffusion augmented samples.

DiffMorph: Text-less Image Morphing with Diffusion Models

January 01, 2024 Shounak Chatterjee

cs.CV, cs.AI

Text-conditioned image generation models are a prevalent use of AI image synthesis, yet intuitively controlling output guided by an artist remains challenging. Current methods require multiple images and textual prompts for each object to specify them as concepts to generate a single customized image. On the other hand, our work, \verb|DiffMorph|, introduces a novel approach that synthesizes images that mix concepts without the use of textual prompts. Our work integrates a sketch-to-image module to incorporate user sketches as input. \verb|DiffMorph| takes an initial image with conditioning artist-drawn sketches to generate a morphed image. We employ a pre-trained text-to-image diffusion model and fine-tune it to reconstruct each image faithfully. We seamlessly merge images and concepts from sketches into a cohesive composition. The image generation capability of our work is demonstrated through our results and a comparison of these with prompt-based image generation.

Diffusion Models, Image Super-Resolution And Everything: A Survey

January 01, 2024 Brian B. Moser, Arundhati S. Shanbhag, Federico Raue, Stanislav Frolov, Sebastian Palacio, Andreas Dengel

cs.CV, cs.AI, cs.LG, cs.MM

Diffusion Models (DMs) represent a significant advancement in image Super-Resolution (SR), aligning technical image quality more closely with human preferences and expanding SR applications. DMs address critical limitations of previous methods, enhancing overall realism and details in SR images. However, DMs suffer from color-shifting issues, and their high computational costs call for efficient sampling alternatives, underscoring the challenge of balancing computational efficiency and image quality. This survey gives an overview of DMs applied to image SR and offers a detailed analysis that underscores the unique characteristics and methodologies within this domain, distinct from broader existing reviews in the field. It presents a unified view of DM fundamentals and explores research directions, including alternative input domains, conditioning strategies, guidance, corruption spaces, and zero-shot methods. This survey provides insights into the evolution of image SR with DMs, addressing current trends, challenges, and future directions in this rapidly evolving field.

SteinDreamer: Variance Reduction for Text-to-3D Score Distillation via Stein Identity

December 31, 2023 Peihao Wang, Zhiwen Fan, Dejia Xu, Dilin Wang, Sreyas Mohan, Forrest Iandola, Rakesh Ranjan, Yilei Li, Qiang Liu, Zhangyang Wang, Vikas Chandra

cs.CV

Score distillation has emerged as one of the most prevalent approaches for text-to-3D asset synthesis. Essentially, score distillation updates 3D parameters by lifting and back-propagating scores averaged over different views. In this paper, we reveal that the gradient estimation in score distillation is inherent to high variance. Through the lens of variance reduction, the effectiveness of SDS and VSD can be interpreted as applications of various control variates to the Monte Carlo estimator of the distilled score. Motivated by this rethinking and based on Stein’s identity, we propose a more general solution to reduce variance for score distillation, termed Stein Score Distillation (SSD). SSD incorporates control variates constructed by Stein identity, allowing for arbitrary baseline functions. This enables us to include flexible guidance priors and network architectures to explicitly optimize for variance reduction. In our experiments, the overall pipeline, dubbed SteinDreamer, is implemented by instantiating the control variate with a monocular depth estimator. The results suggest that SSD can effectively reduce the distillation variance and consistently improve visual quality for both object- and scene-level generation. Moreover, we demonstrate that SteinDreamer achieves faster convergence than existing methods due to more stable gradient updates.

Taming Mode Collapse in Score Distillation for Text-to-3D Generation

December 31, 2023 Peihao Wang, Dejia Xu, Zhiwen Fan, Dilin Wang, Sreyas Mohan, Forrest Iandola, Rakesh Ranjan, Yilei Li, Qiang Liu, Zhangyang Wang, Vikas Chandra

cs.CV, cs.LG

Despite the remarkable performance of score distillation in text-to-3D generation, such techniques notoriously suffer from view inconsistency issues, also known as “Janus” artifact, where the generated objects fake each view with multiple front faces. Although empirically effective methods have approached this problem via score debiasing or prompt engineering, a more rigorous perspective to explain and tackle this problem remains elusive. In this paper, we reveal that the existing score distillation-based text-to-3D generation frameworks degenerate to maximal likelihood seeking on each view independently and thus suffer from the mode collapse problem, manifesting as the Janus artifact in practice. To tame mode collapse, we improve score distillation by re-establishing in entropy term in the corresponding variational objective, which is applied to the distribution of rendered images. Maximizing the entropy encourages diversity among different views in generated 3D assets, thereby mitigating the Janus problem. Based on this new objective, we derive a new update rule for 3D score distillation, dubbed Entropic Score Distillation (ESD). We theoretically reveal that ESD can be simplified and implemented by just adopting the classifier-free guidance trick upon variational score distillation. Although embarrassingly straightforward, our extensive experiments successfully demonstrate that ESD can be an effective treatment for Janus artifacts in score distillation.

Probing the Limits and Capabilities of Diffusion Models for the Anatomic Editing of Digital Twins

December 30, 2023 Karim Kadry, Shreya Gupta, Farhad R. Nezami, Elazer R. Edelman

cs.CV, eess.IV

Numerical simulations can model the physical processes that govern cardiovascular device deployment. When such simulations incorporate digital twins; computational models of patient-specific anatomy, they can expedite and de-risk the device design process. Nonetheless, the exclusive use of patient-specific data constrains the anatomic variability which can be precisely or fully explored. In this study, we investigate the capacity of Latent Diffusion Models (LDMs) to edit digital twins to create anatomic variants, which we term digital siblings. Digital twins and their corresponding siblings can serve as the basis for comparative simulations, enabling the study of how subtle anatomic variations impact the simulated deployment of cardiovascular devices, as well as the augmentation of virtual cohorts for device assessment. However, while diffusion models have been characterized in their ability to edit natural images, their capacity to anatomically edit digital twins has yet to be studied. Using a case example centered on 3D digital twins of cardiac anatomy, we implement various methods for generating digital siblings and characterize them through morphological and topological analyses. We specifically edit digital twins to introduce anatomic variation at different spatial scales and within localized regions, demonstrating the existence of bias towards common anatomic features. We further show that such anatomic bias can be leveraged for virtual cohort augmentation through selective editing, partially alleviating issues related to dataset imbalance and lack of diversity. Our experimental framework thus delineates the limits and capabilities of using latent diffusion models in synthesizing anatomic variation for in silico trials.

Diffusion Model with Perceptual Loss

December 30, 2023 Shanchuan Lin, Xiao Yang

cs.CV, cs.AI, cs.LG

Diffusion models trained with mean squared error loss tend to generate unrealistic samples. Current state-of-the-art models rely on classifier-free guidance to improve sample quality, yet its surprising effectiveness is not fully understood. In this paper, We show that the effectiveness of classifier-free guidance partly originates from it being a form of implicit perceptual guidance. As a result, we can directly incorporate perceptual loss in diffusion training to improve sample quality. Since the score matching objective used in diffusion training strongly resembles the denoising autoencoder objective used in unsupervised training of perceptual networks, the diffusion model itself is a perceptual network and can be used to generate meaningful perceptual loss. We propose a novel self-perceptual objective that results in diffusion models capable of generating more realistic samples. For conditional generation, our method only improves sample quality without entanglement with the conditional input and therefore does not sacrifice sample diversity. Our method can also improve sample quality for unconditional generation, which was not possible with classifier-free guidance before.

iFusion: Inverting Diffusion for Pose-Free Reconstruction from Sparse Views

December 28, 2023 Chin-Hsuan Wu, Yen-Chun Chen, Bolivar Solarte, Lu Yuan, Min Sun

cs.CV

We present iFusion, a novel 3D object reconstruction framework that requires only two views with unknown camera poses. While single-view reconstruction yields visually appealing results, it can deviate significantly from the actual object, especially on unseen sides. Additional views improve reconstruction fidelity but necessitate known camera poses. However, assuming the availability of pose may be unrealistic, and existing pose estimators fail in sparse view scenarios. To address this, we harness a pre-trained novel view synthesis diffusion model, which embeds implicit knowledge about the geometry and appearance of diverse objects. Our strategy unfolds in three steps: (1) We invert the diffusion model for camera pose estimation instead of synthesizing novel views. (2) The diffusion model is fine-tuned using provided views and estimated poses, turned into a novel view synthesizer tailored for the target object. (3) Leveraging registered views and the fine-tuned diffusion model, we reconstruct the 3D object. Experiments demonstrate strong performance in both pose estimation and novel view synthesis. Moreover, iFusion seamlessly integrates with various reconstruction methods and enhances them.

DreamGaussian4D: Generative 4D Gaussian Splatting

December 28, 2023 Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, Ziwei Liu

cs.CV, cs.GR

Remarkable progress has been made in 4D content generation recently. However, existing methods suffer from long optimization time, lack of motion controllability, and a low level of detail. In this paper, we introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation. Our key insight is that the explicit modeling of spatial transformations in Gaussian Splatting makes it more suitable for the 4D generation setting compared with implicit representations. DreamGaussian4D reduces the optimization time from several hours to just a few minutes, allows flexible control of the generated 3D motion, and produces animated meshes that can be efficiently rendered in 3D engines.

PolyDiff: Generating 3D Polygonal Meshes with Diffusion Models

December 18, 2023 Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, Matthias Nießner

cs.CV

We introduce PolyDiff, the first diffusion-based approach capable of directly generating realistic and diverse 3D polygonal meshes. In contrast to methods that use alternate 3D shape representations (e.g. implicit representations), our approach is a discrete denoising diffusion probabilistic model that operates natively on the polygonal mesh data structure. This enables learning of both the geometric properties of vertices and the topological characteristics of faces. Specifically, we treat meshes as quantized triangle soups, progressively corrupted with categorical noise in the forward diffusion phase. In the reverse diffusion phase, a transformer-based denoising network is trained to revert the noising process, restoring the original mesh structure. At inference, new meshes can be generated by applying this denoising network iteratively, starting with a completely noisy triangle soup. Consequently, our model is capable of producing high-quality 3D polygonal meshes, ready for integration into downstream 3D workflows. Our extensive experimental analysis shows that PolyDiff achieves a significant advantage (avg. FID and JSD improvement of 18.2 and 5.8 respectively) over current state-of-the-art methods.

Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent Diffusion Model

December 18, 2023 Decheng Liu, Xijun Wang, Chunlei Peng, Nannan Wang, Ruiming Hu, Xinbo Gao

cs.CV, cs.AI

Adversarial attacks involve adding perturbations to the source image to cause misclassification by the target model, which demonstrates the potential of attacking face recognition models. Existing adversarial face image generation methods still can’t achieve satisfactory performance because of low transferability and high detectability. In this paper, we propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space, which utilizes strong inpainting capabilities of the latent diffusion model to generate realistic adversarial images. Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings. The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness. Extensive qualitative and quantitative experiments on the public FFHQ and CelebA-HQ datasets prove the proposed method achieves superior performance compared with the state-of-the-art methods without an extra generative model training process. The source code is available at https://github.com/kopper-xdu/Adv-Diffusion.

DataElixir: Purifying Poisoned Dataset to Mitigate Backdoor Attacks via Diffusion Models

December 18, 2023 Jiachen Zhou, Peizhuo Lv, Yibing Lan, Guozhu Meng, Kai Chen, Hualong Ma

cs.CR, cs.AI, cs.CV

Dataset sanitization is a widely adopted proactive defense against poisoning-based backdoor attacks, aimed at filtering out and removing poisoned samples from training datasets. However, existing methods have shown limited efficacy in countering the ever-evolving trigger functions, and often leading to considerable degradation of benign accuracy. In this paper, we propose DataElixir, a novel sanitization approach tailored to purify poisoned datasets. We leverage diffusion models to eliminate trigger features and restore benign features, thereby turning the poisoned samples into benign ones. Specifically, with multiple iterations of the forward and reverse process, we extract intermediary images and their predicted labels for each sample in the original dataset. Then, we identify anomalous samples in terms of the presence of label transition of the intermediary images, detect the target label by quantifying distribution discrepancy, select their purified images considering pixel and feature distance, and determine their ground-truth labels by training a benign model. Experiments conducted on 9 popular attacks demonstrates that DataElixir effectively mitigates various complex attacks while exerting minimal impact on benign accuracy, surpassing the performance of baseline defense methods.

Realistic Human Motion Generation with Cross-Diffusion Models

December 18, 2023 Zeping Ren, Shaoli Huang, Xiu Li

cs.CV

We introduce the Cross Human Motion Diffusion Model (CrossDiff), a novel approach for generating high-quality human motion based on textual descriptions. Our method integrates 3D and 2D information using a shared transformer network within the training of the diffusion model, unifying motion noise into a single feature space. This enables cross-decoding of features into both 3D and 2D motion representations, regardless of their original dimension. The primary advantage of CrossDiff is its cross-diffusion mechanism, which allows the model to reverse either 2D or 3D noise into clean motion during training. This capability leverages the complementary information in both motion representations, capturing intricate human movement details often missed by models relying solely on 3D information. Consequently, CrossDiff effectively combines the strengths of both representations to generate more realistic motion sequences. In our experiments, our model demonstrates competitive state-of-the-art performance on text-to-motion benchmarks. Moreover, our method consistently provides enhanced motion generation quality, capturing complex full-body movement intricacies. Additionally, with a pretrained model,our approach accommodates using in the wild 2D motion data without 3D motion ground truth during training to generate 3D motion, highlighting its potential for broader applications and efficient use of available data resources. Project page: https://wonderno.github.io/CrossDiff-webpage/.

Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models

December 17, 2023 Nikita Starodubcev, Artem Fedorov, Artem Babenko, Dmitry Baranchuk

cs.CV

Knowledge distillation methods have recently shown to be a promising direction to speedup the synthesis of large-scale diffusion models by requiring only a few inference steps. While several powerful distillation methods were recently proposed, the overall quality of student samples is typically lower compared to the teacher ones, which hinders their practical usage. In this work, we investigate the relative quality of samples produced by the teacher text-to-image diffusion model and its distilled student version. As our main empirical finding, we discover that a noticeable portion of student samples exhibit superior fidelity compared to the teacher ones, despite the ``approximate’’ nature of the student. Based on this finding, we propose an adaptive collaboration between student and teacher diffusion models for effective text-to-image synthesis. Specifically, the distilled model produces the initial sample, and then an oracle decides whether it needs further improvements with a slow teacher model. Extensive experiments demonstrate that the designed pipeline surpasses state-of-the-art text-to-image alternatives for various inference budgets in terms of human preference. Furthermore, the proposed approach can be naturally used in popular applications such as text-guided image editing and controllable generation.

VecFusion: Vector Font Generation with Diffusion

December 16, 2023 Vikas Thamizharasan, Difan Liu, Shantanu Agarwal, Matthew Fisher, Michael Gharbi, Oliver Wang, Alec Jacobson, Evangelos Kalogerakis

cs.CV, cs.GR

We present VecFusion, a new neural architecture that can generate vector fonts with varying topological structures and precise control point positions. Our approach is a cascaded diffusion model which consists of a raster diffusion model followed by a vector diffusion model. The raster model generates low-resolution, rasterized fonts with auxiliary control point information, capturing the global style and shape of the font, while the vector model synthesizes vector fonts conditioned on the low-resolution raster fonts from the first stage. To synthesize long and complex curves, our vector diffusion model uses a transformer architecture and a novel vector representation that enables the modeling of diverse vector geometry and the precise prediction of control points. Our experiments show that, in contrast to previous generative models for vector graphics, our new cascaded vector diffusion model generates higher quality vector fonts, with complex structures and diverse styles.

Continuous Diffusion for Mixed-Type Tabular Data

December 16, 2023 Markus Mueller, Kathrin Gruber, Dennis Fok

cs.LG, stat.ML

Score-based generative models (or diffusion models for short) have proven successful across many domains in generating text and image data. However, the consideration of mixed-type tabular data with this model family has fallen short so far. Existing research mainly combines different diffusion processes without explicitly accounting for the feature heterogeneity inherent to tabular data. In this paper, we combine score matching and score interpolation to ensure a common type of continuous noise distribution that affects both continuous and categorical features alike. Further, we investigate the impact of distinct noise schedules per feature or per data type. We allow for adaptive, learnable noise schedules to ensure optimally allocated model capacity and balanced generative capability. Results show that our model consistently outperforms state-of-the-art benchmark models and that accounting for heterogeneity within the noise schedule design boosts the sample quality.

Lecture Notes in Probabilistic Diffusion Models

December 16, 2023 Inga Strümke, Helge Langseth

cs.LG, cs.AI

Diffusion models are loosely modelled based on non-equilibrium thermodynamics, where \textit{diffusion} refers to particles flowing from high-concentration regions towards low-concentration regions. In statistics, the meaning is quite similar, namely the process of transforming a complex distribution $p_{\text{complex}}$ on $\mathbb{R}^d$ to a simple distribution $p_{\text{prior}}$ on the same domain. This constitutes a Markov chain of diffusion steps of slowly adding random noise to data, followed by a reverse diffusion process in which the data is reconstructed from the noise. The diffusion model learns the data manifold to which the original and thus the reconstructed data samples belong, by training on a large number of data points. While the diffusion process pushes a data sample off the data manifold, the reverse process finds a trajectory back to the data manifold. Diffusion models have – unlike variational autoencoder and flow models – latent variables with the same dimensionality as the original data, and they are currently\footnote{At the time of writing, 2023.} outperforming other approaches – including Generative Adversarial Networks (GANs) – to modelling the distribution of, e.g., natural images.

Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge

December 16, 2023 Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, Dongyu Zhang

cs.CV, cs.AI, cs.LG

Diffusion models possess powerful generative capabilities enabling the mapping of noise to data using reverse stochastic differential equations. However, in image restoration tasks, the focus is on the mapping relationship from low-quality images to high-quality images. To address this, we introduced the Generalized Ornstein-Uhlenbeck Bridge (GOUB) model. By leveraging the natural mean-reverting property of the generalized OU process and further adjusting the variance of its steady-state distribution through the Doob’s h-transform, we achieve diffusion mappings from point to point with minimal cost. This allows for end-to-end training, enabling the recovery of high-quality images from low-quality ones. Additionally, we uncovered the mathematical essence of some bridge models, all of which are special cases of the GOUB and empirically demonstrated the optimality of our proposed models. Furthermore, benefiting from our distinctive parameterization mechanism, we proposed the Mean-ODE model that is better at capturing pixel-level information and structural perceptions. Experimental results show that both models achieved state-of-the-art results in various tasks, including inpainting, deraining, and super-resolution. Code is available at https://github.com/Hammour-steak/GOUB.

PhenDiff: Revealing Invisible Phenotypes with Conditional Diffusion Models

December 13, 2023 Anis Bourou, Thomas Boyer, Kévin Daupin, Véronique Dubreuil, Aurélie De Thonel, Valérie Mezger, Auguste Genovesio

eess.IV, cs.LG, q-bio.QM

Over the last five years, deep generative models have gradually been adopted for various tasks in biological research. Notably, image-to-image translation methods showed to be effective in revealing subtle phenotypic cell variations otherwise invisible to the human eye. Current methods to achieve this goal mainly rely on Generative Adversarial Networks (GANs). However, these models are known to suffer from some shortcomings such as training instability and mode collapse. Furthermore, the lack of robustness to invert a real image into the latent of a trained GAN prevents flexible editing of real images. In this work, we propose PhenDiff, an image-to-image translation method based on conditional diffusion models to identify subtle phenotypes in microscopy images. We evaluate this approach on biological datasets against previous work such as CycleGAN. We show that PhenDiff outperforms this baseline in terms of quality and diversity of the generated images. We then apply this method to display invisible phenotypic changes triggered by a rare neurodevelopmental disorder on microscopy images of organoids. Altogether, we demonstrate that PhenDiff is able to perform high quality biological image-to-image translation allowing to spot subtle phenotype variations on a real image.

SPD-DDPM: Denoising Diffusion Probabilistic Models in the Symmetric Positive Definite Space

December 13, 2023 Yunchen Li, Zhou Yu, Gaoqi He, Yunhang Shen, Ke Li, Xing Sun, Shaohui Lin

cs.LG, stat.ML

Symmetric positive definite~(SPD) matrices have shown important value and applications in statistics and machine learning, such as FMRI analysis and traffic prediction. Previous works on SPD matrices mostly focus on discriminative models, where predictions are made directly on $E(X|y)$, where $y$ is a vector and $X$ is an SPD matrix. However, these methods are challenging to handle for large-scale data, as they need to access and process the whole data. In this paper, inspired by denoising diffusion probabilistic model~(DDPM), we propose a novel generative model, termed SPD-DDPM, by introducing Gaussian distribution in the SPD space to estimate $E(X|y)$. Moreover, our model is able to estimate $p(X)$ unconditionally and flexibly without giving $y$. On the one hand, the model conditionally learns $p(X|y)$ and utilizes the mean of samples to obtain $E(X|y)$ as a prediction. On the other hand, the model unconditionally learns the probability distribution of the data $p(X)$ and generates samples that conform to this distribution. Furthermore, we propose a new SPD net which is much deeper than the previous networks and allows for the inclusion of conditional factors. Experiment results on toy data and real taxi data demonstrate that our models effectively fit the data distribution both unconditionally and unconditionally and provide accurate predictions.

Concept-centric Personalization with Large-scale Diffusion Priors

December 13, 2023 Pu Cao, Lu Yang, Feng Zhou, Tianrui Huang, Qing Song

cs.CV, cs.AI, cs.MM

Despite large-scale diffusion models being highly capable of generating diverse open-world content, they still struggle to match the photorealism and fidelity of concept-specific generators. In this work, we present the task of customizing large-scale diffusion priors for specific concepts as concept-centric personalization. Our goal is to generate high-quality concept-centric images while maintaining the versatile controllability inherent to open-world models, enabling applications in diverse tasks such as concept-centric stylization and image translation. To tackle these challenges, we identify catastrophic forgetting of guidance prediction from diffusion priors as the fundamental issue. Consequently, we develop a guidance-decoupled personalization framework specifically designed to address this task. We propose Generalized Classifier-free Guidance (GCFG) as the foundational theory for our framework. This approach extends Classifier-free Guidance (CFG) to accommodate an arbitrary number of guidances, sourced from a variety of conditions and models. Employing GCFG enables us to separate conditional guidance into two distinct components: concept guidance for fidelity and control guidance for controllability. This division makes it feasible to train a specialized model for concept guidance, while ensuring both control and unconditional guidance remain intact. We then present a null-text Concept-centric Diffusion Model as a concept-specific generator to learn concept guidance without the need for text annotations. Code will be available at https://github.com/PRIV-Creation/Concept-centric-Personalization.

-Diffusion: A diffusion-based density estimation framework for computational physics

December 13, 2023 Maxwell X. Cai, Kin Long Kelvin Lee

physics.comp-ph, cs.LG

In physics, density $\rho(\cdot)$ is a fundamentally important scalar function to model, since it describes a scalar field or a probability density function that governs a physical process. Modeling $\rho(\cdot)$ typically scales poorly with parameter space, however, and quickly becomes prohibitively difficult and computationally expensive. One promising avenue to bypass this is to leverage the capabilities of denoising diffusion models often used in high-fidelity image generation to parameterize $\rho(\cdot)$ from existing scientific data, from which new samples can be trivially sampled from. In this paper, we propose $\rho$-Diffusion, an implementation of denoising diffusion probabilistic models for multidimensional density estimation in physics, which is currently in active development and, from our results, performs well on physically motivated 2D and 3D density functions. Moreover, we propose a novel hashing technique that allows $\rho$-Diffusion to be conditioned by arbitrary amounts of physical parameters of interest.

Clockwork Diffusion: Efficient Generation With Model-Step Distillation

December 13, 2023 Amirhossein Habibian, Amir Ghodrati, Noor Fathima, Guillaume Sautiere, Risheek Garrepalli, Fatih Porikli, Jens Petersen

cs.CV

This work aims to improve the efficiency of text-to-image diffusion models. While diffusion models use computationally expensive UNet-based denoising operations in every generation step, we identify that not all operations are equally relevant for the final output quality. In particular, we observe that UNet layers operating on high-res feature maps are relatively sensitive to small perturbations. In contrast, low-res feature maps influence the semantic layout of the final image and can often be perturbed with no noticeable change in the output. Based on this observation, we propose Clockwork Diffusion, a method that periodically reuses computation from preceding denoising steps to approximate low-res feature maps at one or more subsequent steps. For multiple baselines, and for both text-to-image generation and image editing, we demonstrate that Clockwork leads to comparable or improved perceptual scores with drastically reduced computational complexity. As an example, for Stable Diffusion v1.5 with 8 DPM++ steps we save 32% of FLOPs with negligible FID and CLIP change.

Compositional Inversion for Stable Diffusion Models

December 13, 2023 Xulu Zhang, Xiao-Yong Wei, Jinlin Wu, Tianyi Zhang, Zhaoxiang Zhang, Zhen Lei, Qing Li

cs.CV

Inversion methods, such as Textual Inversion, generate personalized images by incorporating concepts of interest provided by user images. However, existing methods often suffer from overfitting issues, where the dominant presence of inverted concepts leads to the absence of other desired concepts. It stems from the fact that during inversion, the irrelevant semantics in the user images are also encoded, forcing the inverted concepts to occupy locations far from the core distribution in the embedding space. To address this issue, we propose a method that guides the inversion process towards the core distribution for compositional embeddings. Additionally, we introduce a spatial regularization approach to balance the attention on the concepts being composed. Our method is designed as a post-training approach and can be seamlessly integrated with other inversion methods. Experimental results demonstrate the effectiveness of our proposed approach in mitigating the overfitting problem and generating more diverse and balanced compositions of concepts in the synthesized images. The source code is available at https://github.com/zhangxulu1996/Compositional-Inversion.

ClusterDDPM: An EM clustering framework with Denoising Diffusion Probabilistic Models

December 13, 2023 Jie Yan, Jing Liu, Zhong-yuan Zhang

cs.LG, cs.CV

Variational autoencoder (VAE) and generative adversarial networks (GAN) have found widespread applications in clustering and have achieved significant success. However, the potential of these approaches may be limited due to VAE’s mediocre generation capability or GAN’s well-known instability during adversarial training. In contrast, denoising diffusion probabilistic models (DDPMs) represent a new and promising class of generative models that may unlock fresh dimensions in clustering. In this study, we introduce an innovative expectation-maximization (EM) framework for clustering using DDPMs. In the E-step, we aim to derive a mixture of Gaussian priors for the subsequent M-step. In the M-step, our focus lies in learning clustering-friendly latent representations for the data by employing the conditional DDPM and matching the distribution of latent representations to the mixture of Gaussian priors. We present a rigorous theoretical analysis of the optimization process in the M-step, proving that the optimizations are equivalent to maximizing the lower bound of the Q function within the vanilla EM framework under certain constraints. Comprehensive experiments validate the advantages of the proposed framework, showcasing superior performance in clustering, unsupervised conditional generation and latent representation learning.

Time Series Diffusion Method: A Denoising Diffusion Probabilistic Model for Vibration Signal Generation

December 13, 2023 Haiming Yi, Lei Hou, Yuhong Jin, Nasser A. Saeed

cs.LG, cs.SD, eess.SP

Diffusion models have demonstrated robust data generation capabilities in various research fields. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively

Diffusion Models Enable Zero-Shot Pose Estimation for Lower-Limb Prosthetic Users

December 13, 2023 Tianxun Zhou, Muhammad Nur Shahril Iskandar, Keng-Hwee Chiam

cs.CV, cs.LG

The application of 2D markerless gait analysis has garnered increasing interest and application within clinical settings. However, its effectiveness in the realm of lower-limb amputees has remained less than optimal. In response, this study introduces an innovative zero-shot method employing image generation diffusion models to achieve markerless pose estimation for lower-limb prosthetics, presenting a promising solution to gait analysis for this specific population. Our approach demonstrates an enhancement in detecting key points on prosthetic limbs over existing methods, and enables clinicians to gain invaluable insights into the kinematics of lower-limb amputees across the gait cycle. The outcomes obtained not only serve as a proof-of-concept for the feasibility of this zero-shot approach but also underscore its potential in advancing rehabilitation through gait analysis for this unique population.

Fast Training of Diffusion Transformer with Extreme Masking for 3D Point Clouds Generation

December 12, 2023 Shentong Mo, Enze Xie, Yue Wu, Junsong Chen, Matthias Nießner, Zhenguo Li

cs.CV, cs.AI, cs.LG

Diffusion Transformers have recently shown remarkable effectiveness in generating high-quality 3D point clouds. However, training voxel-based diffusion models for high-resolution 3D voxels remains prohibitively expensive due to the cubic complexity of attention operators, which arises from the additional dimension of voxels. Motivated by the inherent redundancy of 3D compared to 2D, we propose FastDiT-3D, a novel masked diffusion transformer tailored for efficient 3D point cloud generation, which greatly reduces training costs. Specifically, we draw inspiration from masked autoencoders to dynamically operate the denoising process on masked voxelized point clouds. We also propose a novel voxel-aware masking strategy to adaptively aggregate background/foreground information from voxelized point clouds. Our method achieves state-of-the-art performance with an extreme masking ratio of nearly 99%. Moreover, to improve multi-category 3D generation, we introduce Mixture-of-Expert (MoE) in 3D diffusion model. Each category can learn a distinct diffusion path with different experts, relieving gradient conflict. Experimental results on the ShapeNet dataset demonstrate that our method achieves state-of-the-art high-fidelity and diverse 3D point cloud generation performance. Our FastDiT-3D improves 1-Nearest Neighbor Accuracy and Coverage metrics when generating 128-resolution voxel point clouds, using only 6.5% of the original training cost.

Equivariant Flow Matching with Hybrid Probability Transport

December 12, 2023 Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, Wei-Ying Ma

cs.LG, cs.AI

The generation of 3D molecules requires simultaneously deciding the categorical features~(atom types) and continuous features~(atom coordinates). Deep generative models, especially Diffusion Models (DMs), have demonstrated effectiveness in generating feature-rich geometries. However, existing DMs typically suffer from unstable probability dynamics with inefficient sampling speed. In this paper, we introduce geometric flow matching, which enjoys the advantages of both equivariant modeling and stabilized probability dynamics. More specifically, we propose a hybrid probability path where the coordinates probability path is regularized by an equivariant optimal transport, and the information between different modalities is aligned. Experimentally, the proposed method could consistently achieve better performance on multiple molecule generation benchmarks with 4.75$\times$ speed up of sampling on average.

Generating High-Resolution Regional Precipitation Using Conditional Diffusion Model

December 12, 2023 Naufal Shidqi, Chaeyoon Jeong, Sungwon Park, Elke Zeller, Arjun Babu Nellikkattil, Karandeep Singh

cs.LG, cs.AI, physics.ao-ph

Climate downscaling is a crucial technique within climate research, serving to project low-resolution (LR) climate data to higher resolutions (HR). Previous research has demonstrated the effectiveness of deep learning for downscaling tasks. However, most deep learning models for climate downscaling may not perform optimally for high scaling factors (i.e., 4x, 8x) due to their limited ability to capture the intricate details required for generating HR climate data. Furthermore, climate data behaves differently from image data, necessitating a nuanced approach when employing deep generative models. In response to these challenges, this paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale. We employ a denoising diffusion probabilistic model (DDPM) conditioned on multiple LR climate variables. The proposed model is evaluated using precipitation data from the Community Earth System Model (CESM) v1.2.2 simulation. Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.

LoRA-Enhanced Distillation on Guided Diffusion Models

December 12, 2023 Pareesa Ameneh Golnari

cs.CV, cs.LG

Diffusion models, such as Stable Diffusion (SD), offer the ability to generate high-resolution images with diverse features, but they come at a significant computational and memory cost. In classifier-free guided diffusion models, prolonged inference times are attributed to the necessity of computing two separate diffusion models at each denoising step. Recent work has shown promise in improving inference time through distillation techniques, teaching the model to perform similar denoising steps with reduced computations. However, the application of distillation introduces additional memory overhead to these already resource-intensive diffusion models, making it less practical. To address these challenges, our research explores a novel approach that combines Low-Rank Adaptation (LoRA) with model distillation to efficiently compress diffusion models. This approach not only reduces inference time but also mitigates memory overhead, and notably decreases memory consumption even before applying distillation. The results are remarkable, featuring a significant reduction in inference time due to the distillation process and a substantial 50% reduction in memory consumption. Our examination of the generated images underscores that the incorporation of LoRA-enhanced distillation maintains image quality and alignment with the provided prompts. In summary, while conventional distillation tends to increase memory consumption, LoRA-enhanced distillation offers optimization without any trade-offs or compromises in quality.

Photorealistic Video Generation with Diffusion Models

December 11, 2023 Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang, José Lezama

cs.CV, cs.AI, cs.LG

We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of $512 \times 896$ resolution at $8$ frames per second.

UpFusion: Novel View Diffusion from Unposed Sparse View Observations

December 11, 2023 Bharath Raj Nagoor Kani, Hsin-Ying Lee, Sergey Tulyakov, Shubham Tulsiani

cs.CV

We propose UpFusion, a system that can perform novel view synthesis and infer 3D representations for an object given a sparse set of reference images without corresponding pose information. Current sparse-view 3D inference methods typically rely on camera poses to geometrically aggregate information from input views, but are not robust in-the-wild when such information is unavailable/inaccurate. In contrast, UpFusion sidesteps this requirement by learning to implicitly leverage the available images as context in a conditional generative model for synthesizing novel views. We incorporate two complementary forms of conditioning into diffusion models for leveraging the input views: a) via inferring query-view aligned features using a scene-level transformer, b) via intermediate attentional layers that can directly observe the input image tokens. We show that this mechanism allows generating high-fidelity novel views while improving the synthesis quality given additional (unposed) images. We evaluate our approach on the Co3Dv2 and Google Scanned Objects datasets and demonstrate the benefits of our method over pose-reliant sparse-view methods as well as single-view methods that cannot leverage additional views. Finally, we also show that our learned model can generalize beyond the training categories and even allow reconstruction from self-captured images of generic objects in-the-wild.

DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection

December 11, 2023 Haoyang He, Jiangning Zhang, Hongxu Chen, Xuhai Chen, Zhishan Li, Xu Chen, Yabiao Wang, Chengjie Wang, Lei Xie

cs.CV

Reconstruction-based approaches have achieved remarkable outcomes in anomaly detection. The exceptional image reconstruction capabilities of recently popular diffusion models have sparked research efforts to utilize them for enhanced reconstruction of anomalous images. Nonetheless, these methods might face challenges related to the preservation of image categories and pixel-wise structural integrity in the more practical multi-class setting. To solve the above problems, we propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection, which consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion’s denoising network, and a feature-space pre-trained feature extractor. Firstly, The SG network is proposed for reconstructing anomalous regions while preserving the original image’s semantic information. Secondly, we introduce Spatial-aware Feature Fusion (SFF) block to maximize reconstruction accuracy when dealing with extensively reconstructed areas. Thirdly, the input and reconstructed images are processed by a pre-trained feature extractor to generate anomaly maps based on features extracted at different scales. Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach which surpasses the state-of-the-art methods, e.g., achieving 96.8/52.6 and 97.2/99.0 (AUROC/AP) for localization and detection respectively on multi-class MVTec-AD dataset. Code will be available at https://lewandofskee.github.io/projects/diad.

HOI-Diff: Text-Driven Synthesis of 3D Human-Object Interactions using Diffusion Models

December 11, 2023 Xiaogang Peng, Yiming Xie, Zizhao Wu, Varun Jampani, Deqing Sun, Huaizu Jiang

cs.CV

We address the problem of generating realistic 3D human-object interactions (HOIs) driven by textual prompts. Instead of a single model, our key insight is to take a modular design and decompose the complex task into simpler sub-tasks. We first develop a dual-branch diffusion model (HOI-DM) to generate both human and object motions conditioning on the input text, and encourage coherent motions by a cross-attention communication module between the human and object motion generation branches. We also develop an affordance prediction diffusion model (APDM) to predict the contacting area between the human and object during the interactions driven by the textual prompt. The APDM is independent of the results by the HOI-DM and thus can correct potential errors by the latter. Moreover, it stochastically generates the contacting points to diversify the generated motions. Finally, we incorporate the estimated contacting points into the classifier-guidance to achieve accurate and close contact between humans and objects. To train and evaluate our approach, we annotate BEHAVE dataset with text descriptions. Experimental results demonstrate that our approach is able to produce realistic HOIs with various interactions and different types of objects.

DiffAIL: Diffusion Adversarial Imitation Learning

December 11, 2023 Bingzheng Wang, Guoqiang Wu, Teng Pang, Yan Zhang, Yilong Yin

cs.LG

Imitation learning aims to solve the problem of defining reward functions in real-world decision-making tasks. The current popular approach is the Adversarial Imitation Learning (AIL) framework, which matches expert state-action occupancy measures to obtain a surrogate reward for forward reinforcement learning. However, the traditional discriminator is a simple binary classifier and doesn’t learn an accurate distribution, which may result in failing to identify expert-level state-action pairs induced by the policy interacting with the environment. To address this issue, we propose a method named diffusion adversarial imitation learning (DiffAIL), which introduces the diffusion model into the AIL framework. Specifically, DiffAIL models the state-action pairs as unconditional diffusion models and uses diffusion loss as part of the discriminator’s learning objective, which enables the discriminator to capture better expert demonstrations and improve generalization. Experimentally, the results show that our method achieves state-of-the-art performance and significantly surpasses expert demonstration on two benchmark tasks, including the standard state-action setting and state-only settings. Our code can be available at the link https://github.com/ML-Group-SDU/DiffAIL.

The Journey, Not the Destination: How Data Guides Diffusion Models

December 11, 2023 Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, Aleksander Madry

cs.CV, cs.LG

Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity. However, attributing these images back to the training data-that is, identifying specific training examples which caused an image to be generated-remains a challenge. In this paper, we propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions. Then, we provide a method for computing these attributions efficiently. Finally, we apply our method to find (and evaluate) such attributions for denoising diffusion probabilistic models trained on CIFAR-10 and latent diffusion models trained on MS COCO. We provide code at https://github.com/MadryLab/journey-TRAK .

SP-DiffDose: A Conditional Diffusion Model for Radiation Dose Prediction Based on Multi-Scale Fusion of Anatomical Structures, Guided by SwinTransformer and Projector

December 11, 2023 Linjie Fu, Xia Li, Xiuding Cai, Yingkai Wang, Xueyao Wang, Yu Yao, Yali Shen

eess.IV, cs.CV

Radiation therapy serves as an effective and standard method for cancer treatment. Excellent radiation therapy plans always rely on high-quality dose distribution maps obtained through repeated trial and error by experienced experts. However, due to individual differences and complex clinical situations, even seasoned expert teams may need help to achieve the best treatment plan every time quickly. Many automatic dose distribution prediction methods have been proposed recently to accelerate the radiation therapy planning process and have achieved good results. However, these results suffer from over-smoothing issues, with the obtained dose distribution maps needing more high-frequency details, limiting their clinical application. To address these limitations, we propose a dose prediction diffusion model based on SwinTransformer and a projector, SP-DiffDose. To capture the direct correlation between anatomical structure and dose distribution maps, SP-DiffDose uses a structural encoder to extract features from anatomical images, then employs a conditional diffusion process to blend noise and anatomical images at multiple scales and gradually map them to dose distribution maps. To enhance the dose prediction distribution for organs at risk, SP-DiffDose utilizes SwinTransformer in the deeper layers of the network to capture features at different scales in the image. To learn good representations from the fused features, SP-DiffDose passes the fused features through a designed projector, improving dose prediction accuracy. Finally, we evaluate SP-DiffDose on an internal dataset. The results show that SP-DiffDose outperforms existing methods on multiple evaluation metrics, demonstrating the superiority and generalizability of our method.

PCRDiffusion: Diffusion Probabilistic Models for Point Cloud Registration

December 11, 2023 Yue Wu, Yongzhe Yuan, Xiaolong Fan, Xiaoshui Huang, Maoguo Gong, Qiguang Miao

cs.CV, cs.AI

We propose a new framework that formulates point cloud registration as a denoising diffusion process from noisy transformation to object transformation. During training stage, object transformation diffuses from ground-truth transformation to random distribution, and the model learns to reverse this noising process. In sampling stage, the model refines randomly generated transformation to the output result in a progressive way. We derive the variational bound in closed form for training and provide implementations of the model. Our work provides the following crucial findings: (i) In contrast to most existing methods, our framework, Diffusion Probabilistic Models for Point Cloud Registration (PCRDiffusion) does not require repeatedly update source point cloud to refine the predicted transformation. (ii) Point cloud registration, one of the representative discriminative tasks, can be solved by a generative way and the unified probabilistic formulation. Finally, we discuss and provide an outlook on the application of diffusion model in different scenarios for point cloud registration. Experimental results demonstrate that our model achieves competitive performance in point cloud registration. In correspondence-free and correspondence-based scenarios, PCRDifussion can both achieve exceeding 50\% performance improvements.

CONFORM: Contrast is All You Need For High-Fidelity Text-to-Image Diffusion Models

December 11, 2023 Tuna Han Salih Meral, Enis Simsar, Federico Tombari, Pinar Yanardag

cs.CV, cs.AI, cs.LG

Images produced by text-to-image diffusion models might not always faithfully represent the semantic intent of the provided text prompt, where the model might overlook or entirely fail to produce certain objects. Existing solutions often require customly tailored functions for each of these problems, leading to sub-optimal results, especially for complex prompts. Our work introduces a novel perspective by tackling this challenge in a contrastive context. Our approach intuitively promotes the segregation of objects in attention maps while also maintaining that pairs of related attributes are kept close to each other. We conduct extensive experiments across a wide variety of scenarios, each involving unique combinations of objects, attributes, and scenes. These experiments effectively showcase the versatility, efficiency, and flexibility of our method in working with both latent and pixel-based diffusion models, including Stable Diffusion and Imagen. Moreover, we publicly share our source code to facilitate further research.

A Note on the Convergence of Denoising Diffusion Probabilistic Models

December 10, 2023 Sokhna Diarra Mbacke, Omar Rivasplata

cs.LG

Diffusion models are one of the most important families of deep generative models. In this note, we derive a quantitative upper bound on the Wasserstein distance between the data-generating distribution and the distribution learned by a diffusion model. Unlike previous works in this field, our result does not make assumptions on the learned score function. Moreover, our bound holds for arbitrary data-generating distributions on bounded instance spaces, even those without a density w.r.t. the Lebesgue measure, and the upper bound does not suffer from exponential dependencies. Our main result builds upon the recent work of Mbacke et al. (2023) and our proofs are elementary.

Diffusion for Natural Image Matting

December 10, 2023 Yihan Hu, Yiheng Lin, Wei Wang, Yao Zhao, Yunchao Wei, Humphrey Shi

cs.CV

We aim to leverage diffusion to address the challenging image matting task. However, the presence of high computational overhead and the inconsistency of noise sampling between the training and inference processes pose significant obstacles to achieving this goal. In this paper, we present DiffMatte, a solution designed to effectively overcome these challenges. First, DiffMatte decouples the decoder from the intricately coupled matting network design, involving only one lightweight decoder in the iterations of the diffusion process. With such a strategy, DiffMatte mitigates the growth of computational overhead as the number of samples increases. Second, we employ a self-aligned training strategy with uniform time intervals, ensuring a consistent noise sampling between training and inference across the entire time domain. Our DiffMatte is designed with flexibility in mind and can seamlessly integrate into various modern matting architectures. Extensive experimental results demonstrate that DiffMatte not only reaches the state-of-the-art level on the Composition-1k test set, surpassing the best methods in the past by 5% and 15% in the SAD metric and MSE metric respectively, but also show stronger generalization ability in other benchmarks.

InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models

December 10, 2023 Jiun Tian Hoe, Xudong Jiang, Chee Seng Chan, Yap-Peng Tan, Weipeng Hu

cs.CV, cs.GR, cs.MM

Large-scale text-to-image (T2I) diffusion models have showcased incredible capabilities in generating coherent images based on textual descriptions, enabling vast applications in content generation. While recent advancements have introduced control over factors such as object localization, posture, and image contours, a crucial gap remains in our ability to control the interactions between objects in the generated content. Well-controlling interactions in generated images could yield meaningful applications, such as creating realistic scenes with interacting characters. In this work, we study the problems of conditioning T2I diffusion models with Human-Object Interaction (HOI) information, consisting of a triplet label (person, action, object) and corresponding bounding boxes. We propose a pluggable interaction control model, called InteractDiffusion that extends existing pre-trained T2I diffusion models to enable them being better conditioned on interactions. Specifically, we tokenize the HOI information and learn their relationships via interaction embeddings. A conditioning self-attention layer is trained to map HOI tokens to visual tokens, thereby conditioning the visual tokens better in existing T2I diffusion models. Our model attains the ability to control the interaction and location on existing T2I diffusion models, which outperforms existing baselines by a large margin in HOI detection score, as well as fidelity in FID and KID. Project page: https://jiuntian.github.io/interactdiffusion.

AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model

December 10, 2023 Teng Hu, Jiangning Zhang, Ran Yi, Yuzhen Du, Xu Chen, Liang Liu, Yabiao Wang, Chengjie Wang

cs.CV

Anomaly inspection plays an important role in industrial manufacture. Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data. Although anomaly generation methods have been proposed to augment the anomaly data, they either suffer from poor generation authenticity or inaccurate alignment between the generated anomalies and masks. To address the above problems, we propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model, which utilizes the strong prior information of latent diffusion model learned from large-scale dataset to enhance the generation authenticity under few-shot training data. Firstly, we propose Spatial Anomaly Embedding, which consists of a learnable anomaly embedding and a spatial embedding encoded from an anomaly mask, disentangling the anomaly information into anomaly appearance and location information. Moreover, to improve the alignment between the generated anomalies and the anomaly masks, we introduce a novel Adaptive Attention Re-weighting Mechanism. Based on the disparities between the generated anomaly image and normal sample, it dynamically guides the model to focus more on the areas with less noticeable generated anomalies, enabling generation of accurately-matched anomalous image-mask pairs. Extensive experiments demonstrate that our model significantly outperforms the state-of-the-art methods in generation authenticity and diversity, and effectively improves the performance of downstream anomaly inspection tasks. The code and data are available in https://github.com/sjtuplayer/anomalydiffusion.

Conditional Stochastic Interpolation for Generative Learning

December 09, 2023 Ding Huang, Jian Huang, Ting Li, Guohao Shen

stat.ML, cs.LG

We propose a conditional stochastic interpolation (CSI) approach to learning conditional distributions. CSI learns probability flow equations or stochastic differential equations that transport a reference distribution to the target conditional distribution. This is achieved by first learning the drift function and the conditional score function based on conditional stochastic interpolation, which are then used to construct a deterministic process governed by an ordinary differential equation or a diffusion process for conditional sampling. In our proposed CSI model, we incorporate an adaptive diffusion term to address the instability issues arising during the training process. We provide explicit forms of the conditional score function and the drift function in terms of conditional expectations under mild conditions, which naturally lead to an nonparametric regression approach to estimating these functions. Furthermore, we establish non-asymptotic error bounds for learning the target conditional distribution via conditional stochastic interpolation in terms of KL divergence, taking into account the neural network approximation error. We illustrate the application of CSI on image generation using a benchmark image dataset.

DPoser: Diffusion Model as Robust 3D Human Pose Prior

December 09, 2023 Junzhe Lu, Jing Lin, Hongkun Dou, Yulun Zhang, Yue Deng, Haoqian Wang

cs.CV

Modeling human pose is a cornerstone in applications from human-robot interaction to augmented reality, yet crafting a robust human pose prior remains a challenge due to biomechanical constraints and diverse human movements. Traditional priors like VAEs and NDFs often fall short in realism and generalization, especially in extreme conditions such as unseen noisy poses. To address these issues, we introduce DPoser, a robust and versatile human pose prior built upon diffusion models. Designed with optimization frameworks, DPoser seamlessly integrates into various pose-centric applications, including human mesh recovery, pose completion, and motion denoising. Specifically, by formulating these tasks as inverse problems, we employ variational diffusion sampling for efficient solving. Furthermore, acknowledging the disparity between the articulated poses we focus on and structured images in previous research, we propose a truncated timestep scheduling to boost performance on downstream tasks. Our exhaustive experiments demonstrate DPoser’s superiority over existing state-of-the-art pose priors across multiple tasks.

Consistency Models for Scalable and Fast Simulation-Based Inference

December 09, 2023 Marvin Schmitt, Valentin Pratz, Ullrich Köthe, Paul-Christian Bürkner, Stefan T Radev

cs.LG, cs.AI, stat.ML

Simulation-based inference (SBI) is constantly in search of more expressive algorithms for accurately inferring the parameters of complex models from noisy data. We present consistency models for neural posterior estimation (CMPE), a new free-form conditional sampler for scalable, fast, and amortized SBI with generative neural networks. CMPE combines the advantages of normalizing flows and flow matching methods into a single generative architecture: It essentially distills a continuous probability flow and enables rapid few-shot inference with an unconstrained architecture that can be tailored to the structure of the estimation problem. Our empirical evaluation demonstrates that CMPE not only outperforms current state-of-the-art algorithms on three hard low-dimensional problems, but also achieves competitive performance in a high-dimensional Bayesian denoising experiment and in estimating a computationally demanding multi-scale model of tumor spheroid growth.

Efficient Quantization Strategies for Latent Diffusion Models

December 09, 2023 Yuewei Yang, Xiaoliang Dai, Jialiang Wang, Peizhao Zhang, Hongbo Zhang

cs.CV, cs.AI

Latent Diffusion Models (LDMs) capture the dynamic evolution of latent variables over time, blending patterns and multimodality in a generative system. Despite the proficiency of LDM in various applications, such as text-to-image generation, facilitated by robust text encoders and a variational autoencoder, the critical need to deploy large generative models on edge devices compels a search for more compact yet effective alternatives. Post Training Quantization (PTQ), a method to compress the operational size of deep learning models, encounters challenges when applied to LDM due to temporal and structural complexities. This study proposes a quantization strategy that efficiently quantize LDMs, leveraging Signal-to-Quantization-Noise Ratio (SQNR) as a pivotal metric for evaluation. By treating the quantization discrepancy as relative noise and identifying sensitive part(s) of a model, we propose an efficient quantization approach encompassing both global and local strategies. The global quantization process mitigates relative quantization noise by initiating higher-precision quantization on sensitive blocks, while local treatments address specific challenges in quantization-sensitive and time-sensitive modules. The outcomes of our experiments reveal that the implementation of both global and local treatments yields a highly efficient and effective Post Training Quantization (PTQ) of LDMs.

Cross Domain Generative Augmentation: Domain Generalization with Latent Diffusion Models

December 08, 2023 Sobhan Hemati, Mahdi Beitollahi, Amir Hossein Estiri, Bassel Al Omari, Xi Chen, Guojun Zhang

cs.LG

Despite the huge effort in developing novel regularizers for Domain Generalization (DG), adding simple data augmentation to the vanilla ERM which is a practical implementation of the Vicinal Risk Minimization principle (VRM) \citep{chapelle2000vicinal} outperforms or stays competitive with many of the proposed regularizers. The VRM reduces the estimation error in ERM by replacing the point-wise kernel estimates with a more precise estimation of true data distribution that reduces the gap between data points \textbf{within each domain}. However, in the DG setting, the estimation error of true data distribution by ERM is mainly caused by the distribution shift \textbf{between domains} which cannot be fully addressed by simple data augmentation techniques within each domain. Inspired by this limitation of VRM, we propose a novel data augmentation named Cross Domain Generative Augmentation (CDGA) that replaces the pointwise kernel estimates in ERM with new density estimates in the \textbf{vicinity of domain pairs} so that the gap between domains is further reduced. To this end, CDGA, which is built upon latent diffusion models (LDM), generates synthetic images to fill the gap between all domains and as a result, reduces the non-iidness. We show that CDGA outperforms SOTA DG methods under the Domainbed benchmark. To explain the effectiveness of CDGA, we generate more than 5 Million synthetic images and perform extensive ablation studies including data scaling laws, distribution visualization, domain shift quantification, adversarial robustness, and loss landscape analysis.

Membership Inference Attacks on Diffusion Models via Quantile Regression

December 08, 2023 Shuai Tang, Zhiwei Steven Wu, Sergul Aydore, Michael Kearns, Aaron Roth

cs.LG, cs.CR

Recently, diffusion models have become popular tools for image synthesis because of their high-quality outputs. However, like other large-scale models, they may leak private information about their training data. Here, we demonstrate a privacy vulnerability of diffusion models through a \emph{membership inference (MI) attack}, which aims to identify whether a target example belongs to the training set when given the trained diffusion model. Our proposed MI attack learns quantile regression models that predict (a quantile of) the distribution of reconstruction loss on examples not used in training. This allows us to define a granular hypothesis test for determining the membership of a point in the training set, based on thresholding the reconstruction loss of that point using a custom threshold tailored to the example. We also provide a simple bootstrap technique that takes a majority membership prediction over a bag of weak attackers'' which improves the accuracy over individual quantile regression models. We show that our attack outperforms the prior state-of-the-art attack while being substantially less computationally expensive -- prior attacks required training multipleshadow models’’ with the same architecture as the model under attack, whereas our attack requires training only much smaller models.

UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models

December 08, 2023 Yiming Zhao, Zhouhui Lian

cs.CV

Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at https://github.com/ZYM-PKU/UDiffText .

MVDD: Multi-View Depth Diffusion Models

December 08, 2023 Zhen Wang, Qiangeng Xu, Feitong Tan, Menglei Chai, Shichen Liu, Rohit Pandey, Sean Fanello, Achuta Kadambi, Yinda Zhang

cs.CV

Denoising diffusion models have demonstrated outstanding results in 2D image generation, yet it remains a challenge to replicate its success in 3D shape generation. In this paper, we propose leveraging multi-view depth, which represents complex 3D shapes in a 2D data format that is easy to denoise. We pair this representation with a diffusion model, MVDD, that is capable of generating high-quality dense point clouds with 20K+ points with fine-grained details. To enforce 3D consistency in multi-view depth, we introduce an epipolar line segment attention that conditions the denoising step for a view on its neighboring views. Additionally, a depth fusion module is incorporated into diffusion steps to further ensure the alignment of depth maps. When augmented with surface reconstruction, MVDD can also produce high-quality 3D meshes. Furthermore, MVDD stands out in other tasks such as depth completion, and can serve as a 3D prior, significantly boosting many downstream tasks, such as GAN inversion. State-of-the-art results from extensive experiments demonstrate MVDD’s excellent ability in 3D shape generation, depth completion, and its potential as a 3D prior for downstream tasks.

HandDiffuse: Generative Controllers for Two-Hand Interactions via Diffusion Models

December 08, 2023 Pei Lin, Sihang Xu, Hongdi Yang, Yiran Liu, Xin Chen, Jingya Wang, Jingyi Yu, Lan Xu

cs.CV

Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands, which can not yet fit the need for interacting hands motion generation. To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions. HandDiffuse12.5M has the largest scale and richest interactions among the existing two-hand datasets. We further present a strong baseline method HandDiffuse for the controllable motion generation of interacting hands using various controllers. Specifically, we apply the diffusion model as the backbone and design two motion representations for different controllers. To reduce artifacts, we also propose Interaction Loss which explicitly quantifies the dynamic interaction process. Our HandDiffuse enables various applications with vivid two-hand interactions, i.e., motion in-betweening and trajectory control. Experiments show that our method outperforms the state-of-the-art techniques in motion generation and can also contribute to data augmentation for other datasets. Our dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research towards two-hand interaction modeling.

DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic Models

December 08, 2023 Tianqi Xiang, Wenjun Yue, Yiqun Lin, Jiewen Yang, Zhenkun Wang, Xiaomeng Li

eess.IV, cs.CV

Performing magnetic resonance imaging (MRI) reconstruction from under-sampled k-space data can accelerate the procedure to acquire MRI scans and reduce patients’ discomfort. The reconstruction problem is usually formulated as a denoising task that removes the noise in under-sampled MRI image slices. Although previous GAN-based methods have achieved good performance in image denoising, they are difficult to train and require careful tuning of hyperparameters. In this paper, we propose a novel MRI denoising framework DiffCMR by leveraging conditional denoising diffusion probabilistic models. Specifically, DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice. During inference, we adopt a multi-round ensembling strategy to stabilize the performance. We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge (CMRxRecon) dataset. Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin. Code is available at https://github.com/xmed-lab/DiffCMR.

MimicDiffusion: Purifying Adversarial Perturbation via Mimicking Clean Diffusion Model

December 08, 2023 Kaiyu Song, Hanjiang Lai

cs.CV

Deep neural networks (DNNs) are vulnerable to adversarial perturbation, where an imperceptible perturbation is added to the image that can fool the DNNs. Diffusion-based adversarial purification focuses on using the diffusion model to generate a clean image against such adversarial attacks. Unfortunately, the generative process of the diffusion model is also inevitably affected by adversarial perturbation since the diffusion model is also a deep network where its input has adversarial perturbation. In this work, we propose MimicDiffusion, a new diffusion-based adversarial purification technique, that directly approximates the generative process of the diffusion model with the clean image as input. Concretely, we analyze the differences between the guided terms using the clean image and the adversarial sample. After that, we first implement MimicDiffusion based on Manhattan distance. Then, we propose two guidance to purify the adversarial perturbation and approximate the clean diffusion model. Extensive experiments on three image datasets including CIFAR-10, CIFAR-100, and ImageNet with three classifier backbones including WideResNet-70-16, WideResNet-28-10, and ResNet50 demonstrate that MimicDiffusion significantly performs better than the state-of-the-art baselines. On CIFAR-10, CIFAR-100, and ImageNet, it achieves 92.67\%, 61.35\%, and 61.53\% average robust accuracy, which are 18.49\%, 13.23\%, and 17.64\% higher, respectively. The code is available in the supplementary material.

Diffence: Fencing Membership Privacy With Diffusion Models

December 07, 2023 Yuefeng Peng, Ali Naseh, Amir Houmansadr

cs.CR, cs.CV, cs.LG

Deep learning models, while achieving remarkable performance across various tasks, are vulnerable to member inference attacks, wherein adversaries identify if a specific data point was part of a model’s training set. This susceptibility raises substantial privacy concerns, especially when models are trained on sensitive datasets. Current defense methods often struggle to provide robust protection without hurting model utility, and they often require retraining the model or using extra data. In this work, we introduce a novel defense framework against membership attacks by leveraging generative models. The key intuition of our defense is to remove the differences between member and non-member inputs which can be used to perform membership attacks, by re-generating input samples before feeding them to the target model. Therefore, our defense works \emph{pre-inference}, which is unlike prior defenses that are either training-time (modify the model) or post-inference time (modify the model’s output). A unique feature of our defense is that it works on input samples only, without modifying the training or inference phase of the target model. Therefore, it can be cascaded with other defense mechanisms as we demonstrate through experiments. Through extensive experimentation, we show that our approach can serve as a robust plug-n-play defense mechanism, enhancing membership privacy without compromising model utility in both baseline and defended settings. For example, our method enhanced the effectiveness of recent state-of-the-art defenses, reducing attack accuracy by an average of 5.7\% to 12.4\% across three datasets, without any impact on the model’s accuracy. By integrating our method with prior defenses, we achieve new state-of-the-art performance in the privacy-utility trade-off.

NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion

December 07, 2023 Savva Ignatyev, Daniil Selikhanovych, Oleg Voynov, Yiqun Wang, Peter Wonka, Stamatios Lefkimmiatis, Evgeny Burnaev

cs.CV, cs.AI, cs.GR

We present a novel method for 3D surface reconstruction from multiple images where only a part of the object of interest is captured. Our approach builds on two recent developments: surface reconstruction using neural radiance fields for the reconstruction of the visible parts of the surface, and guidance of pre-trained 2D diffusion models in the form of Score Distillation Sampling (SDS) to complete the shape in unobserved regions in a plausible manner. We introduce three components. First, we suggest employing normal maps as a pure geometric representation for SDS instead of color renderings which are entangled with the appearance information. Second, we introduce the freezing of the SDS noise during training which results in more coherent gradients and better convergence. Third, we propose Multi-View SDS as a way to condition the generation of the non-observable part of the surface without fine-tuning or making changes to the underlying 2D Stable Diffusion model. We evaluate our approach on the BlendedMVS dataset demonstrating significant qualitative and quantitative improvements over competing methods.

Memory Triggers: Unveiling Memorization in Text-To-Image Generative Models through Word-Level Duplication

December 06, 2023 Ali Naseh, Jaechul Roh, Amir Houmansadr

cs.CR, cs.CV, cs.LG

Diffusion-based models, such as the Stable Diffusion model, have revolutionized text-to-image synthesis with their ability to produce high-quality, high-resolution images. These advancements have prompted significant progress in image generation and editing tasks. However, these models also raise concerns due to their tendency to memorize and potentially replicate exact training samples, posing privacy risks and enabling adversarial attacks. Duplication in training datasets is recognized as a major factor contributing to memorization, and various forms of memorization have been studied so far. This paper focuses on two distinct and underexplored types of duplication that lead to replication during inference in diffusion-based models, particularly in the Stable Diffusion model. We delve into these lesser-studied duplication phenomena and their implications through two case studies, aiming to contribute to the safer and more responsible use of generative models in various applications.

WarpDiffusion: Efficient Diffusion Model for High-Fidelity Virtual Try-on

December 06, 2023 xujie zhang, Xiu Li, Michael Kampffmeyer, Xin Dong, Zhenyu Xie, Feida Zhu, Haoye Dong, Xiaodan Liang

cs.CV

Image-based Virtual Try-On (VITON) aims to transfer an in-shop garment image onto a target person. While existing methods focus on warping the garment to fit the body pose, they often overlook the synthesis quality around the garment-skin boundary and realistic effects like wrinkles and shadows on the warped garments. These limitations greatly reduce the realism of the generated results and hinder the practical application of VITON techniques. Leveraging the notable success of diffusion-based models in cross-modal image synthesis, some recent diffusion-based methods have ventured to tackle this issue. However, they tend to either consume a significant amount of training resources or struggle to achieve realistic try-on effects and retain garment details. For efficient and high-fidelity VITON, we propose WarpDiffusion, which bridges the warping-based and diffusion-based paradigms via a novel informative and local garment feature attention mechanism. Specifically, WarpDiffusion incorporates local texture attention to reduce resource consumption and uses a novel auto-mask module that effectively retains only the critical areas of the warped garment while disregarding unrealistic or erroneous portions. Notably, WarpDiffusion can be integrated as a plug-and-play component into existing VITON methodologies, elevating their synthesis quality. Extensive experiments on high-resolution VITON benchmarks and an in-the-wild test set demonstrate the superiority of WarpDiffusion, surpassing state-of-the-art methods both qualitatively and quantitatively.

TokenCompose: Grounding Diffusion with Token-level Supervision

December 06, 2023 Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, Zhuowen Tu

cs.CV

We present TokenCompose, a Latent Diffusion Model for text-to-image generation that achieves enhanced consistency between user-specified text prompts and model-generated images. Despite its tremendous success, the standard denoising process in the Latent Diffusion Model takes text prompts as conditions only, absent explicit constraint for the consistency between the text prompts and the image contents, leading to unsatisfactory results for composing multiple object categories. TokenCompose aims to improve multi-category instance composition by introducing the token-wise consistency terms between the image content and object segmentation maps in the finetuning stage. TokenCompose can be applied directly to the existing training pipeline of text-conditioned diffusion models without extra human labeling information. By finetuning Stable Diffusion, the model exhibits significant improvements in multi-category instance composition and enhanced photorealism for its generated images.

DiffusionSat: A Generative Foundation Model for Satellite Imagery

December 06, 2023 Samar Khanna, Patrick Liu, Linqi Zhou, Chenlin Meng, Robin Rombach, Marshall Burke, David Lobell, Stefano Ermon

cs.CV, cs.AI, cs.LG

Diffusion models have achieved state-of-the-art results on many modalities including images, speech, and video. However, existing models are not tailored to support remote sensing data, which is widely used in important applications including environmental monitoring and crop-yield prediction. Satellite images are significantly different from natural images – they can be multi-spectral, irregularly sampled across time – and existing diffusion models trained on images from the Web do not support them. Furthermore, remote sensing data is inherently spatio-temporal, requiring conditional generation tasks not supported by traditional methods based on captions or images. In this paper, we present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets. As text-based captions are sparsely available for satellite images, we incorporate the associated metadata such as geolocation as conditioning information. Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting. Our method outperforms previous state-of-the-art methods for satellite image generation and is the first large-scale $\textit{generative}$ foundation model for satellite imagery.

Context Diffusion: In-Context Aware Image Generation

December 06, 2023 Ivona Najdenkoska, Animesh Sinha, Abhimanyu Dubey, Dhruv Mahajan, Vignesh Ramanathan, Filip Radenovic

cs.CV

We propose Context Diffusion, a diffusion-based framework that enables image generation models to learn from visual examples presented in context. Recent work tackles such in-context learning for image generation, where a query image is provided alongside context examples and text prompts. However, the quality and fidelity of the generated images deteriorate when the prompt is not present, demonstrating that these models are unable to truly learn from the visual context. To address this, we propose a novel framework that separates the encoding of the visual context and preserving the structure of the query images. This results in the ability to learn from the visual context and text prompts, but also from either one of them. Furthermore, we enable our model to handle few-shot settings, to effectively address diverse in-context learning scenarios. Our experiments and user study demonstrate that Context Diffusion excels in both in-domain and out-of-domain tasks, resulting in an overall enhancement in image quality and fidelity compared to counterpart models.

FoodFusion: A Latent Diffusion Model for Realistic Food Image Generation

December 06, 2023 Olivia Markham, Yuhao Chen, Chi-en Amy Tai, Alexander Wong

cs.CV

Current state-of-the-art image generation models such as Latent Diffusion Models (LDMs) have demonstrated the capacity to produce visually striking food-related images. However, these generated images often exhibit an artistic or surreal quality that diverges from the authenticity of real-world food representations. This inadequacy renders them impractical for applications requiring realistic food imagery, such as training models for image-based dietary assessment. To address these limitations, we introduce FoodFusion, a Latent Diffusion model engineered specifically for the faithful synthesis of realistic food images from textual descriptions. The development of the FoodFusion model involves harnessing an extensive array of open-source food datasets, resulting in over 300,000 curated image-caption pairs. Additionally, we propose and employ two distinct data cleaning methodologies to ensure that the resulting image-text pairs maintain both realism and accuracy. The FoodFusion model, thus trained, demonstrates a remarkable ability to generate food images that exhibit a significant improvement in terms of both realism and diversity over the publicly available image generation models. We openly share the dataset and fine-tuned models to support advancements in this critical field of food image synthesis at https://bit.ly/genai4good.

Schrodinger Bridges Beat Diffusion Models on Text-to-Speech Synthesis

December 06, 2023 Zehua Chen, Guande He, Kaiwen Zheng, Xu Tan, Jun Zhu

cs.SD, cs.LG, eess.AS

In text-to-speech (TTS) synthesis, diffusion models have achieved promising generation quality. However, because of the pre-defined data-to-noise diffusion process, their prior distribution is restricted to a noisy representation, which provides little information of the generation target. In this work, we present a novel TTS system, Bridge-TTS, making the first attempt to substitute the noisy Gaussian prior in established diffusion-based TTS methods with a clean and deterministic one, which provides strong structural information of the target. Specifically, we leverage the latent representation obtained from text input as our prior, and build a fully tractable Schrodinger bridge between it and the ground-truth mel-spectrogram, leading to a data-to-data process. Moreover, the tractability and flexibility of our formulation allow us to empirically study the design spaces such as noise schedules, as well as to develop stochastic and deterministic samplers. Experimental results on the LJ-Speech dataset illustrate the effectiveness of our method in terms of both synthesis quality and sampling efficiency, significantly outperforming our diffusion counterpart Grad-TTS in 50-step/1000-step synthesis and strong fast TTS models in few-step scenarios. Project page: https://bridge-tts.github.io/

Diffused Task-Agnostic Milestone Planner

December 06, 2023 Mineui Hong, Minjae Kang, Songhwai Oh

cs.RO, cs.AI, cs.LG

Addressing decision-making problems using sequence modeling to predict future trajectories shows promising results in recent years. In this paper, we take a step further to leverage the sequence predictive method in wider areas such as long-term planning, vision-based control, and multi-task decision-making. To this end, we propose a method to utilize a diffusion-based generative sequence model to plan a series of milestones in a latent space and to have an agent to follow the milestones to accomplish a given task. The proposed method can learn control-relevant, low-dimensional latent representations of milestones, which makes it possible to efficiently perform long-term planning and vision-based control. Furthermore, our approach exploits generation flexibility of the diffusion model, which makes it possible to plan diverse trajectories for multi-task decision-making. We demonstrate the proposed method across offline reinforcement learning (RL) benchmarks and an visual manipulation environment. The results show that our approach outperforms offline RL methods in solving long-horizon, sparse-reward tasks and multi-task problems, while also achieving the state-of-the-art performance on the most challenging vision-based manipulation benchmark.

DiffPMAE: Diffusion Masked Autoencoders for Point Cloud Reconstruction

December 06, 2023 Yanlong Li, Chamara Madarasingha, Kanchana Thilakarathna

cs.CV

Point cloud streaming is increasingly getting popular, evolving into the norm for interactive service delivery and the future Metaverse. However, the substantial volume of data associated with point clouds presents numerous challenges, particularly in terms of high bandwidth consumption and large storage capacity. Despite various solutions proposed thus far, with a focus on point cloud compression, upsampling, and completion, these reconstruction-related methods continue to fall short in delivering high fidelity point cloud output. As a solution, in DiffPMAE, we propose an effective point cloud reconstruction architecture. Inspired by self-supervised learning concepts, we combine Masked Auto-Encoding and Diffusion Model mechanism to remotely reconstruct point cloud data. By the nature of this reconstruction process, DiffPMAE can be extended to many related downstream tasks including point cloud compression, upsampling and completion. Leveraging ShapeNet-55 and ModelNet datasets with over 60000 objects, we validate the performance of DiffPMAE exceeding many state-of-the-art methods in-terms of auto-encoding and downstream tasks considered.

ReconFusion: 3D Reconstruction with Diffusion Priors

December 05, 2023 Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P. Srinivasan, Dor Verbin, Jonathan T. Barron, Ben Poole, Aleksander Holynski

cs.CV

3D reconstruction methods such as Neural Radiance Fields (NeRFs) excel at rendering photorealistic novel views of complex scenes. However, recovering a high-quality NeRF typically requires tens to hundreds of input images, resulting in a time-consuming capture process. We present ReconFusion to reconstruct real-world scenes using only a few photos. Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets, which regularizes a NeRF-based 3D reconstruction pipeline at novel camera poses beyond those captured by the set of input images. Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions. We perform an extensive evaluation across various real-world datasets, including forward-facing and 360-degree scenes, demonstrating significant performance improvements over previous few-view NeRF reconstruction approaches.

DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud Registration

December 05, 2023 Zhi Chen, Yufan Ren, Tong Zhang, Zheng Dang, Wenbing Tao, Sabine Süsstrunk, Mathieu Salzmann

cs.CV

Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds. We propose formulating PCR as a denoising diffusion probabilistic process, mapping noisy transformations to the ground truth. However, using diffusion models for PCR has nontrivial challenges, such as adapting a generative model to a discriminative task and leveraging the estimated nonlinear transformation from the previous step. Instead of training a diffusion model to directly map pure noise to ground truth, we map the predictions of an off-the-shelf PCR model to ground truth. The predictions of off-the-shelf models are often imperfect, especially in challenging cases where the two points clouds have low overlap, and thus could be seen as noisy versions of the real rigid transformation. In addition, we transform the rotation matrix into a spherical linear space for interpolation between samples in the forward process, and convert rigid transformations into auxiliary information to implicitly exploit last-step estimations in the reverse process. As a result, conditioned on time step, the denoising model adapts to the increasing accuracy across steps and refines registrations. Our extensive experiments showcase the effectiveness of our DiffusionPCR, yielding state-of-the-art registration recall rates (95.3%/81.6%) on 3DMatch and 3DLoMatch. The code will be made public upon publication.

Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection

December 05, 2023 Cheng-Ju Ho, Chen-Hsuan Tai, Yen-Yu Lin, Ming-Hsuan Yang, Yi-Hsuan Tsai

cs.CV

Semi-supervised object detection is crucial for 3D scene understanding, efficiently addressing the limitation of acquiring large-scale 3D bounding box annotations. Existing methods typically employ a teacher-student framework with pseudo-labeling to leverage unlabeled point clouds. However, producing reliable pseudo-labels in a diverse 3D space still remains challenging. In this work, we propose Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection. Specifically, we include noises to produce corrupted 3D object size and class label distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs. Moreover, we integrate the diffusion model into the teacher-student framework, so that the denoised bounding boxes can be used to improve pseudo-label generation, as well as the entire semi-supervised learning process. We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods. We also present extensive analysis to understand how our diffusion model design affects performance in semi-supervised learning.

Deterministic Guidance Diffusion Model for Probabilistic Weather Forecasting

December 05, 2023 Donggeun Yoon, Minseok Seo, Doyi Kim, Yeji Choi, Donghyeon Cho

cs.CV

Weather forecasting requires not only accuracy but also the ability to perform probabilistic prediction. However, deterministic weather forecasting methods do not support probabilistic predictions, and conversely, probabilistic models tend to be less accurate. To address these challenges, in this paper, we introduce the \textbf{\textit{D}}eterministic \textbf{\textit{G}}uidance \textbf{\textit{D}}iffusion \textbf{\textit{M}}odel (DGDM) for probabilistic weather forecasting, integrating benefits of both deterministic and probabilistic approaches. During the forward process, both the deterministic and probabilistic models are trained end-to-end. In the reverse process, weather forecasting leverages the predicted result from the deterministic model, using as an intermediate starting point for the probabilistic model. By fusing deterministic models with probabilistic models in this manner, DGDM is capable of providing accurate forecasts while also offering probabilistic predictions. To evaluate DGDM, we assess it on the global weather forecasting dataset (WeatherBench) and the common video frame prediction benchmark (Moving MNIST). We also introduce and evaluate the Pacific Northwest Windstorm (PNW)-Typhoon weather satellite dataset to verify the effectiveness of DGDM in high-resolution regional forecasting. As a result of our experiments, DGDM achieves state-of-the-art results not only in global forecasting but also in regional forecasting. The code is available at: \url{https://github.com/DongGeun-Yoon/DGDM}.

BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models

December 05, 2023 Fengyuan Shi, Jiaxi Gu, Hang Xu, Songcen Xu, Wei Zhang, Limin Wang

cs.CV, cs.AI

Diffusion models have made tremendous progress in text-driven image and video generation. Now text-to-image foundation models are widely applied to various downstream image synthesis tasks, such as controllable image generation and image editing, while downstream video synthesis tasks are less explored for several reasons. First, it requires huge memory and compute overhead to train a video generation foundation model. Even with video foundation models, additional costly training is still required for downstream video synthesis tasks. Second, although some works extend image diffusion models into videos in a training-free manner, temporal consistency cannot be well kept. Finally, these adaption methods are specifically designed for one task and fail to generalize to different downstream video synthesis tasks. To mitigate these issues, we propose a training-free general-purpose video synthesis framework, coined as BIVDiff, via bridging specific image diffusion models and general text-to-video foundation diffusion models. Specifically, we first use an image diffusion model (like ControlNet, Instruct Pix2Pix) for frame-wise video generation, then perform Mixed Inversion on the generated video, and finally input the inverted latents into the video diffusion model for temporal smoothing. Decoupling image and video models enables flexible image model selection for different purposes, which endows the framework with strong task generalization and high efficiency. To validate the effectiveness and general use of BIVDiff, we perform a wide range of video generation tasks, including controllable video generation video editing, video inpainting and outpainting. Our project page is available at https://bivdiff.github.io.

Analyzing and Improving the Training Dynamics of Diffusion Models

December 05, 2023 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, Samuli Laine

cs.CV, cs.AI, cs.LG, cs.NE, stat.ML

Diffusion models currently dominate the field of data-driven image synthesis with their unparalleled scaling to large datasets. In this paper, we identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture, without altering its high-level structure. Observing uncontrolled magnitude changes and imbalances in both the network activations and weights over the course of training, we redesign the network layers to preserve activation, weight, and update magnitudes on expectation. We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity. Our modifications improve the previous record FID of 2.41 in ImageNet-512 synthesis to 1.81, achieved using fast deterministic sampling. As an independent contribution, we present a method for setting the exponential moving average (EMA) parameters post-hoc, i.e., after completing the training run. This allows precise tuning of EMA length without the cost of performing several training runs, and reveals its surprising interactions with network architecture, training time, and guidance.

Diffusion-Based Speech Enhancement in Matched and Mismatched Conditions Using a Heun-Based Sampler

December 05, 2023 Philippe Gonzalez, Zheng-Hua Tan, Jan Østergaard, Jesper Jensen, Tommy Sonne Alstrøm, Tobias May

eess.AS, cs.LG, cs.SD

Diffusion models are a new class of generative models that have recently been applied to speech enhancement successfully. Previous works have demonstrated their superior performance in mismatched conditions compared to state-of-the art discriminative models. However, this was investigated with a single database for training and another one for testing, which makes the results highly dependent on the particular databases. Moreover, recent developments from the image generation literature remain largely unexplored for speech enhancement. These include several design aspects of diffusion models, such as the noise schedule or the reverse sampler. In this work, we systematically assess the generalization performance of a diffusion-based speech enhancement model by using multiple speech, noise and binaural room impulse response (BRIR) databases to simulate mismatched acoustic conditions. We also experiment with a noise schedule and a sampler that have not been applied to speech enhancement before. We show that the proposed system substantially benefits from using multiple databases for training, and achieves superior performance compared to state-of-the-art discriminative models in both matched and mismatched conditions. We also show that a Heun-based sampler achieves superior performance at a smaller computational cost compared to a sampler commonly used for speech enhancement.

Stable Diffusion Exposed: Gender Bias from Prompt to Image

December 05, 2023 Yankun Wu, Yuta Nakashima, Noa Garcia

cs.CV

Recent studies have highlighted biases in generative models, shedding light on their predisposition towards gender-based stereotypes and imbalances. This paper contributes to this growing body of research by introducing an evaluation protocol designed to automatically analyze the impact of gender indicators on Stable Diffusion images. Leveraging insights from prior work, we explore how gender indicators not only affect gender presentation but also the representation of objects and layouts within the generated images. Our findings include the existence of differences in the depiction of objects, such as instruments tailored for specific genders, and shifts in overall layouts. We also reveal that neutral prompts tend to produce images more aligned with masculine prompts than their feminine counterparts, providing valuable insights into the nuanced gender biases inherent in Stable Diffusion.

Diffusion Noise Feature: Accurate and Fast Generated Image Detection

December 05, 2023 Yichi Zhang, Xiaogang Xu

cs.CV

Generative models have reached an advanced stage where they can produce remarkably realistic images. However, this remarkable generative capability also introduces the risk of disseminating false or misleading information. Notably, existing image detectors for generated images encounter challenges such as low accuracy and limited generalization. This paper seeks to address this issue by seeking a representation with strong generalization capabilities to enhance the detection of generated images. Our investigation has revealed that real and generated images display distinct latent Gaussian representations when subjected to an inverse diffusion process within a pre-trained diffusion model. Exploiting this disparity, we can amplify subtle artifacts in generated images. Building upon this insight, we introduce a novel image representation known as Diffusion Noise Feature (DNF). DNF is an ensemble representation that estimates the noise generated during the inverse diffusion process. A simple classifier, e.g., ResNet, trained on DNF achieves high accuracy, robustness, and generalization capabilities for detecting generated images, even from previously unseen classes or models. We conducted experiments using a widely recognized and standard dataset, achieving state-of-the-art effects of Detection.

GeNIe: Generative Hard Negative Images Through Diffusion

December 05, 2023 Soroush Abbasi Koohpayegani, Anuj Singh, K L Navaneet, Hadi Jamali-Rad, Hamed Pirsiavash

cs.CV

Data augmentation is crucial in training deep models, preventing them from overfitting to limited data. Common data augmentation methods are effective, but recent advancements in generative AI, such as diffusion models for image generation, enable more sophisticated augmentation techniques that produce data resembling natural images. We recognize that augmented samples closer to the ideal decision boundary of a classifier are particularly effective and efficient in guiding the learning process. We introduce GeNIe which leverages a diffusion model conditioned on a text prompt to merge contrasting data points (an image from the source category and a text prompt from the target category) to generate challenging samples for the target category. Inspired by recent image editing methods, we limit the number of diffusion iterations and the amount of noise. This ensures that the generated image retains low-level and contextual features from the source image, potentially conflicting with the target category. Our extensive experiments, in few-shot and also long-tail distribution settings, demonstrate the effectiveness of our novel augmentation method, especially benefiting categories with a limited number of examples.

Kernel Diffusion: An Alternate Approach to Blind Deconvolution

December 04, 2023 Yash Sanghvi, Yiheng Chi, Stanley H. Chan

eess.IV

Blind deconvolution problems are severely ill-posed because neither the underlying signal nor the forward operator are not known exactly. Conventionally, these problems are solved by alternating between estimation of the image and kernel while keeping the other fixed. In this paper, we show that this framework is flawed because of its tendency to get trapped in local minima and, instead, suggest the use of a kernel estimation strategy with a non-blind solver. This framework is employed by a diffusion method which is trained to sample the blur kernel from the conditional distribution with guidance from a pre-trained non-blind solver. The proposed diffusion method leads to state-of-the-art results on both synthetic and real blur datasets.

Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation

December 04, 2023 Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, Konrad Schindler

cs.CV

Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: https://marigoldmonodepth.github.io.

DiffiT: Diffusion Vision Transformers for Image Generation

December 04, 2023 Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, Arash Vahdat

cs.CV, cs.AI, cs.LG

Diffusion models with their powerful expressivity and high sample quality have enabled many new applications and use-cases in various domains. For sample generation, these models rely on a denoising neural network that generates images by iterative denoising. Yet, the role of denoising network architecture is not well-studied with most efforts relying on convolutional residual U-Nets. In this paper, we study the effectiveness of vision transformers in diffusion-based generative learning. Specifically, we propose a new model, denoted as Diffusion Vision Transformers (DiffiT), which consists of a hybrid hierarchical architecture with a U-shaped encoder and decoder. We introduce a novel time-dependent self-attention module that allows attention layers to adapt their behavior at different stages of the denoising process in an efficient manner. We also introduce latent DiffiT which consists of transformer model with the proposed self-attention layers, for high-resolution image generation. Our results show that DiffiT is surprisingly effective in generating high-fidelity images, and it achieves state-of-the-art (SOTA) benchmarks on a variety of class-conditional and unconditional synthesis tasks. In the latent space, DiffiT achieves a new SOTA FID score of 1.73 on ImageNet-256 dataset. Repository: https://github.com/NVlabs/DiffiT

Stochastic Optimal Control Matching

December 04, 2023 Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen

math.OC, cs.LG, cs.NA, math.NA, math.PR, stat.ML

Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic optimal control for three out of four control problems, in some cases by an order of magnitude. The key idea underlying SOCM is the path-wise reparameterization trick, a novel technique that is of independent interest, e.g., for generative modeling. Code at https://github.com/facebookresearch/SOC-matching

Conditional Variational Diffusion Models

December 04, 2023 Gabriel della Maggiora, Luis Alberto Croquevielle, Nikita Desphande, Harry Horsley, Thomas Heinis, Artur Yakimovich

cs.CV, cs.AI, cs.LG, stat.ML, I.2.6

Inverse problems aim to determine parameters from observations, a crucial task in engineering and science. Lately, generative models, especially diffusion models, have gained popularity in this area for their ability to produce realistic solutions and their good mathematical properties. Despite their success, an important drawback of diffusion models is their sensitivity to the choice of variance schedule, which controls the dynamics of the diffusion process. Fine-tuning this schedule for specific applications is crucial but time-costly and does not guarantee an optimal result. We propose a novel approach for learning the schedule as part of the training process. Our method supports probabilistic conditioning on data, provides high-quality solutions, and is flexible, proving able to adapt to different applications with minimum overhead. This approach is tested in two unrelated inverse problems: super-resolution microscopy and quantitative phase imaging, yielding comparable or superior results to previous methods and fine-tuned diffusion models. We conclude that fine-tuning the schedule by experimentation should be avoided because it can be learned during training in a stable way that yields better results.

Generalization by Adaptation: Diffusion-Based Domain Extension for Domain-Generalized Semantic Segmentation

December 04, 2023 Joshua Niemeijer, Manuel Schwonberg, Jan-Aike Termöhlen, Nico M. Schmidt, Tim Fingscheidt

cs.CV, cs.LG

When models, e.g., for semantic segmentation, are applied to images that are vastly different from training data, the performance will drop significantly. Domain adaptation methods try to overcome this issue, but need samples from the target domain. However, this might not always be feasible for various reasons and therefore domain generalization methods are useful as they do not require any target data. We present a new diffusion-based domain extension (DIDEX) method and employ a diffusion model to generate a pseudo-target domain with diverse text prompts. In contrast to existing methods, this allows to control the style and content of the generated images and to introduce a high diversity. In a second step, we train a generalizing model by adapting towards this pseudo-target domain. We outperform previous approaches by a large margin across various datasets and architectures without using any real data. For the generalization from GTA5, we improve state-of-the-art mIoU performance by 3.8% absolute on average and for SYNTHIA by 11.8% absolute, marking a big step for the generalization performance on these benchmarks. Code is available at https://github.com/JNiemeijer/DIDEX

Fully Spiking Denoising Diffusion Implicit Models

December 04, 2023 Ryo Watanabe, Yusuke Mukuta, Tatsuya Harada

cs.CV

Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds and remarkable energy efficiencies. SNNs can be used in conventional neural network-based time- and energy-consuming applications. However, research on generative models within SNNs remains limited, despite their advantages. In particular, diffusion models are a powerful class of generative models, whose image generation quality surpass that of the other generative models, such as GANs. However, diffusion models are characterized by high computational costs and long inference times owing to their iterative denoising feature. Therefore, we propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs and leverage the high speed and low energy consumption features of SNNs via synaptic current learning (SCL). SCL fills the gap in that diffusion models use a neural network to estimate real-valued parameters of a predefined probabilistic distribution, whereas SNNs output binary spike trains. The SCL enables us to complete the entire generative process of diffusion models exclusively using SNNs. We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.

ResEnsemble-DDPM: Residual Denoising Diffusion Probabilistic Models for Ensemble Learning

December 04, 2023 Shi Zhenning, Dong Changsheng, Xie Xueshuo, Pan Bin, He Along, Li Tao

cs.CV, cs.AI

Nowadays, denoising diffusion probabilistic models have been adapted for many image segmentation tasks. However, existing end-to-end models have already demonstrated remarkable capabilities. Rather than using denoising diffusion probabilistic models alone, integrating the abilities of both denoising diffusion probabilistic models and existing end-to-end models can better improve the performance of image segmentation. Based on this, we implicitly introduce residual term into the diffusion process and propose ResEnsemble-DDPM, which seamlessly integrates the diffusion model and the end-to-end model through ensemble learning. The output distributions of these two models are strictly symmetric with respect to the ground truth distribution, allowing us to integrate the two models by reducing the residual term. Experimental results demonstrate that our ResEnsemble-DDPM can further improve the capabilities of existing models. Furthermore, its ensemble learning strategy can be generalized to other downstream tasks in image generation and get strong competitiveness.

Diffusion Posterior Sampling for Nonlinear CT Reconstruction

December 03, 2023 Shudong Li, Matthew Tivnan, Yuan Shen, J. Webster Stayman

physics.med-ph, cs.CV, eess.IV, physics.comp-ph, J.3; I.4.4; I.4.5

Diffusion models have been demonstrated as powerful deep learning tools for image generation in CT reconstruction and restoration. Recently, diffusion posterior sampling, where a score-based diffusion prior is combined with a likelihood model, has been used to produce high quality CT images given low-quality measurements. This technique is attractive since it permits a one-time, unsupervised training of a CT prior; which can then be incorporated with an arbitrary data model. However, current methods only rely on a linear model of x-ray CT physics to reconstruct or restore images. While it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a new method that solves the inverse problem of nonlinear CT image reconstruction via diffusion posterior sampling. We implement a traditional unconditional diffusion model by training a prior score function estimator, and apply Bayes rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. This plug-and-play method allows incorporation of a diffusion-based prior with generalized nonlinear CT image reconstruction into multiple CT system designs with different forward models, without the need for any additional training. We develop the algorithm that performs this reconstruction, including an ordered-subsets variant for accelerated processing and demonstrate the technique in both fully sampled low dose data and sparse-view geometries using a single unsupervised training of the prior.

Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models

December 03, 2023 Shengqu Cai, Duygu Ceylan, Matheus Gadelha, Chun-Hao Paul Huang, Tuanfeng Yang Wang, Gordon Wetzstein

</