analitics

Pages

Showing posts with label module. Show all posts
Showing posts with label module. Show all posts

Tuesday, January 6, 2026

Python 3.13.0 : PyWin32 is full compatible with Python 3.13 .

Today I tried to use these python packages:
import win32serviceutil
import win32service
import win32event
import servicemanager
The works , but python -m pywin32_postinstall -install comes with:
python.exe: No module named pywin32_postinstall
NOTE : The copilot artificial intelligence, search and give me an old answer , but is wrong ...
PyWin32 is updated slowly, and at this moment there are no wheels for Python 3.13.
The pip tool cannot install pywin32 does not install anything usable, and pywin32_postinstall does not exist
Possible solutions
PyWin32 works perfectly on:
  • Python 3.12
  • Python 3.11
  • Python 3.10
If you need win32service, win32api, win32com, etc., you must use a supported version.
Need to see the last tutorial from my blogger.
I tested on admin with simple service and works:
python service_test_001.py install
Installing service MyPythonService
Service installed
This is the source code:
import win32serviceutil
import win32service
import win32event
import servicemanager
import time

class MyService(win32serviceutil.ServiceFramework):
    _svc_name_ = "MyPythonService"
    _svc_display_name_ = "My Python Windows Service"
    _svc_description_ = "A minimal Windows service example written in Python."

    def __init__(self, args):
        win32serviceutil.ServiceFramework.__init__(self, args)
        self.stop_event = win32event.CreateEvent(None, 0, 0, None)
        self.running = True

    def SvcStop(self):
        self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
        win32event.SetEvent(self.stop_event)
        self.running = False

    def SvcDoRun(self):
        servicemanager.LogInfoMsg("MyPythonService is starting.")
        self.main()

    def main(self):
        while self.running:
            # Your service logic goes here
            time.sleep(5)
            servicemanager.LogInfoMsg("MyPythonService heartbeat.")


if __name__ == '__main__':
    win32serviceutil.HandleCommandLine(MyService)

Sunday, January 4, 2026

Python 3.13.0 : how to install pywin32_postinstall.

Today a tutorial on how to install pywin32_postinstall.
This package is essential for accessing Windows-specific functionalities in Python.
The pywin32_postinstall missing python error typically occurs when the pywin32 package is not properly installed or the post-installation script is not executed correctly.
Fisrt install the pywin32 python package.
pip install pywin32
The next step is to run this command on the path with Script folder.
python C:\Python313\Scripts\pywin32_postinstall.py -install
Parsed arguments are: Namespace(install=True, remove=False, wait=None, silent=False, quiet=False, destination= ...
The next step is to run this command on the path with Script folder.
D:\Python313_64bit>python
Python 3.13.0 (tags/v3.13.0:60403a5, Oct  7 2024, 09:38:07) [MSC v.1941 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import win32api
>>> print(win32api.GetVersion())

Friday, January 2, 2026

Python Qt6 : script for impact on your development workflow using scans features.

Impact on development workflows that rely on Language Server Protocol (LSP) features.
1. Editor Limitations
Your editor (VS Code, Neovim, Qt Creator, etc.) attempts to send a file to the Language Server, but the file is not accessible through the file:// protocol.
When this happens, the LSP rejects the request, and you lose essential features such as:
  • IntelliSense
  • Autocomplete
  • Hover information
  • Diagnostics
  • Jump‑to‑definition
  • Refactoring tools
2. Issues in Non‑Standard Projects
This limitation becomes more severe when working with:
  • dynamically generated files
  • files inside containers
  • remote workspaces
  • build systems that create temporary or virtual files
Since the LSP cannot process these resources, you lose intelligent code support.
3. Toolchain Breakdowns
If you rely on an automated workflow (analysis, diagnostics, UI integration, etc.), an LSP restricted to file:// can break:
  • static analysis
  • code validation
  • report generation
  • plugin integrations
Real Risks in Development
1. False or Incomplete Diagnostics
The LSP may not see the actual files, leading to:
  • false errors
  • missed real errors
2. Dangerous Refactoring
If the LSP cannot access all files, automated refactoring may:
  • fail to update all references
  • introduce new bugs
3. Reduced Productivity
Without full LSP support, you lose:
  • intelligent completion
  • fast navigation
  • real‑time validation
4. Incompatibility With Modern Tooling
Many modern IDEs rely on virtual or remote workspaces. An LSP limited to file:// becomes outdated quickly.
5. Indirect Security Risks
Not a vulnerability by itself, but:
  • if the LSP cannot analyze remote files, you may miss security issues in generated or synchronized code.
I tested with a simple python source code to detect how bad is running on I.D.E. The script continuously scans your Windows system to detect, analyze, and report the real‑time behavior, resource usage, crashes, leaks, ports, and child processes of all VS Code, LSP, and Antigravity components, showing their impact on your development workflow through a live PyQt6 dashboard.
The result after runnig is:

Thursday, January 1, 2026

Python Qt6 : QCalendarWidget simple example with csv file.

Here is a simple example of source code with PyQt6 and QCalendarWidget to create a calendar. You click on the date and enter a note. This is saved in a file with the date time ... and the note. When you reopen the script, it opens in notepad and the saved notes. Obviously it is a simple example but you can improve it with databases, make a note management, encrypt it, link it to an external database, etc.
import sys
import csv
import os
import subprocess
from datetime import datetime
from PyQt6.QtWidgets import (
    QApplication, QWidget, QVBoxLayout, QCalendarWidget,
    QInputDialog, QMessageBox
)
from PyQt6.QtCore import QDate


CSV_FILE = "note.csv"


class CalendarApp(QWidget):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Calendar cu notițe")
        self.resize(400, 300)

        self.layout = QVBoxLayout()
        self.setLayout(self.layout)

        self.calendar = QCalendarWidget()
        self.calendar.clicked.connect(self.adauga_nota)
        self.layout.addWidget(self.calendar)

        # Dicționar pentru notițe
        self.note = {}

        # La pornire, citește CSV și deschide în Notepad
        self.incarca_note()

    def adauga_nota(self, date: QDate):
        zi = date.toString("yyyy-MM-dd")

        text, ok = QInputDialog.getText(self, "Adaugă notiță",
                                        f"Introdu text pentru {zi}:")
        if ok and text.strip():
            timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
            self.note[timestamp] = text.strip()
            QMessageBox.information(self, "Salvat",
                                    "Notița a fost adăugată.")

    def incarca_note(self):
        if os.path.exists(CSV_FILE):
            try:
                with open(CSV_FILE, "r", newline="", encoding="utf-8") as f:
                    reader = csv.reader(f)
                    for row in reader:
                        if len(row) == 2:
                            self.note[row[0]] = row[1]

                # Deschide în Notepad
                subprocess.Popen(["notepad.exe", CSV_FILE])

            except Exception as e:
                QMessageBox.warning(self, "Eroare",
                                    f"Nu pot citi fișierul CSV:\n{e}")

    def closeEvent(self, event):
        try:
            with open(CSV_FILE, "w", newline="", encoding="utf-8") as f:
                writer = csv.writer(f)
                for timestamp, text in self.note.items():
                    writer.writerow([timestamp, text])
        except Exception as e:
            QMessageBox.warning(self, "Eroare",
                                f"Nu pot salva fișierul CSV:\n{e}")

        event.accept()


if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = CalendarApp()
    window.show()
    sys.exit(app.exec())
... this is the result:

Tuesday, December 30, 2025

Python Qt6 : video processing and background remover and sprites tool

It seems that the intrusion blocked my python and pip tool in command ... but I managed to create a tool with the python modules I had installed that would automatically remove my background and create sprites after a crop selection ... here's what it looks like with the character from the Easter project.
pyqt5 python video tool
... and result with crop and remove the green color from background:

Wednesday, December 10, 2025

Python 3.13.0 : ... simple script for copilot history.

NOTES: I have been using artificial intelligence since it appeared, it is obviously faster and more accurate, I recommend using testing on larger projects.
This python script will take the database and use to get copilot history and save to file copilot_conversations.txt :
import os
import sqlite3
import datetime
import requests
from bs4 import BeautifulSoup
import shutil

# Locația tipică pentru istoricul Edge (Windows)
edge_history_path = os.path.expanduser(
    r"~\\AppData\\Local\\Microsoft\\Edge\\User Data\\Default\\History"
)

# Copiem fișierul History în folderul curent
def copy_history_file(src_path, dst_name="edge_history_copy.db"):
    if not os.path.exists(src_path):
        print("Nu am găsit istoricul Edge.")
        return None
    dst_path = os.path.join(os.getcwd(), dst_name)
    try:
        shutil.copy(src_path, dst_path)
        print(f"Am copiat baza de date în {dst_path}")
        return dst_path
    except Exception as e:
        print(f"Eroare la copiere: {e}")
        return None

def extract_copilot_links(db_path):
    conn = sqlite3.connect(db_path)
    cursor = conn.cursor()

    cursor.execute("""
        SELECT url, title, last_visit_time
        FROM urls
        WHERE url LIKE '%copilot%'
    """)

    results = []
    for url, title, last_visit_time in cursor.fetchall():
        ts = datetime.datetime(1601, 1, 1) + datetime.timedelta(microseconds=last_visit_time)
        results.append({
            "url": url,
            "title": title,
            "last_visit": ts.strftime("%Y-%m-%d %H:%M:%S")
        })

    conn.close()
    return results

def fetch_conversation(url):
    try:
        resp = requests.get(url)
        if resp.status_code == 200:
            soup = BeautifulSoup(resp.text, "html.parser")
            texts = soup.get_text(separator="\n", strip=True)
            return texts
        else:
            return f"Eroare acces {url}: {resp.status_code}"
    except Exception as e:
        return f"Eroare acces {url}: {e}"

if __name__ == "__main__":
    copy_path = copy_history_file(edge_history_path)
    if copy_path:
        chats = extract_copilot_links(copy_path)
        if chats:
            with open("copilot_conversations.txt", "w", encoding="utf-8") as f:
                for chat in chats:
                    content = fetch_conversation(chat["url"])
                    f.write(f"=== Conversație: {chat['title']} ({chat['last_visit']}) ===\n")
                    f.write(content)
                    f.write("\n\n")
            print("Am salvat conversațiile în copilot_conversations.txt")
        else:
            print("Nu am găsit conversații Copilot în istoricul Edge.")

Saturday, December 6, 2025

News : Python 3.14.1 and Python 3.13.10 are now available!

... these are good news from 2 december 2025:
Python 3.14.1 is the first maintenance release of 3.14, containing around 558 bugfixes, build improvements and documentation changes since 3.14.0.
Python 3.13.10 is the tenth maintenance release of 3.13, containing around 300 bugfixes, build improvements and documentation changes since 3.13.9.
Read more on the official blogger.

Wednesday, December 3, 2025

Python 3.13.0 : ... playwright - part 001.

Playwright for Python is a modern automation library that allows developers to control browsers like Chromium, Firefox, and WebKit. It is widely used for testing, scraping, and simulating real user interactions.
The package provides an asynchronous API, enabling fast and reliable automation. Developers can launch browsers, navigate to pages, fill forms, click buttons, and capture results with minimal code.
In practice, Playwright is useful for tasks such as automated testing, repetitive searches, data collection, and simulating human-like browsing behavior across multiple browsers.
The example script demonstrates how to open Firefox, navigate to Google, perform a series of searches, scroll the page, and pause between actions to mimic natural user activity.
Additionally, the script saves each search query into a text file, creating a simple log of performed searches. This shows how Playwright can combine browser automation with file handling for practical workflows.
I used the pip tool then I install the playwright:
pip install playwright
playwright install
Let's see the script:
import asyncio
from playwright.async_api import async_playwright

async def main():
    async with async_playwright() as p:
        browser = await p.firefox.launch(headless=False)
        context = await browser.new_context()
        page = await context.new_page()

        await page.goto("https://www.google.com")

        queries = [
            "python automation",
            "playwright tutorial",
            "google search automation"
        ]

        with open("results.txt", "w", encoding="utf-8") as f:
            for q in queries:
                # Fill search box
                await page.fill("textarea[name='q']", q)
                await page.press("textarea[name='q']", "Enter")
                await page.wait_for_load_state("domcontentloaded")

                # Scroll + pause
                await page.evaluate("window.scrollBy(0, document.body.scrollHeight)")
                await page.wait_for_timeout(3000)

                # Extract search results (titles + links)
                results = await page.query_selector_all("h3")
                f.write(f"\nResults for: {q}\n")
                for r in results[:5]:  # primele 5 rezultate
                    title = await r.inner_text()
                    link_el = await r.evaluate_handle("node => node.parentElement")
                    link = await link_el.get_attribute("href")
                    f.write(f"- {title} ({link})\n")

                print(f"Saved results for: {q}")

        await browser.close()

asyncio.run(main())
Then I run with this command:
python google_search_test_001.py
Saved results for: python automation
Saved results for: playwright tutorial
Saved results for: google search automation
Need to click to accept on browser ... , and some basic result on results.txt file:

Results for: python automation

Results for: playwright tutorial
- Playwright: Fast and reliable end-to-end testing for modern ... 

Sunday, November 30, 2025

News : the xonsh shell language and command prompt.

Xonsh is a modern, full-featured and cross-platform python shell. The language is a superset of Python 3.6+ with additional shell primitives that you are used to from Bash and IPython. It works on all major systems including Linux, OSX, and Windows. Xonsh is meant for the daily use of experts and novices.
The install is easy with pip tool:
python -m pip install 'xonsh[full]'

Python 3.13.0 : mitmproxy - part 001.

Mitmproxy is an interactive, open‑source proxy tool that lets you intercept, inspect, and modify HTTP and HTTPS traffic in real time. It acts as a "man‑in‑the‑middle" between your computer and the internet, making it possible to debug, test, or analyze how applications communicate online.
Why Python?
  • Mitmproxy is built in Python and exposes a powerful addon API
  • You can write custom scripts to automate tasks and traffic manipulation
  • Block or rewrite requests and responses with flexible logic
  • Inject headers or simulate server responses for testing
  • Integrate with other Python tools for advanced automation
  • Intercept and inspect HTTP and HTTPS traffic in real time
  • Modify requests and responses dynamically with Python scripts
  • Block specific hosts or URLs to prevent unwanted connections
  • Inject custom headers into outgoing requests for debugging or control
  • Rewrite response bodies (HTML, JSON, text) using regex or custom logic
  • Log and save traffic flows for later analysis and replay
  • Simulate server responses to test client behavior offline
  • Automate testing of web applications and APIs with scripted rules
  • Monitor performance metrics such as latency and payload size
  • Integrate with other Python tools for advanced automation and analysis
  • Use a trusted root certificate to decrypt and modify HTTPS traffic securely
Let's install:
pip install mitmproxy
Let's see the python script:
# addon.py
from mitmproxy import http
from mitmproxy import ctx
import re

BLOCKED_HOSTS = {
    "hyte.com",
    "ads.example.org",
}

REWRITE_RULES = [
    # Each rule: (pattern, replacement, content_type_substring)
    (re.compile(rb"Hello World"), b"Salut lume", "text/html"),
    (re.compile(rb"tracking", re.IGNORECASE), b"observare", "text"),
]

ADD_HEADERS = {
    "X-Debug-Proxy": "mitm",
    "X-George-Tool": "true",
}

class GeorgeProxy:
    def __init__(self):
        self.rewrite_count = 0

    def load(self, loader):
        ctx.log.info("GeorgeProxy addon loaded.")

    def request(self, flow: http.HTTPFlow):
        # Block specific hosts early
        host = flow.request.host
        if host in BLOCKED_HOSTS:
            flow.response = http.Response.make(
                403,
                b"Blocked by GeorgeProxy",
                {"Content-Type": "text/plain"}
            )
            ctx.log.warn(f"Blocked request to {host}")
            return

        # Add custom headers to outgoing requests
        for k, v in ADD_HEADERS.items():
            flow.request.headers[k] = v

        ctx.log.info(f"REQ {flow.request.method} {flow.request.url}")

    def response(self, flow: http.HTTPFlow):
        # Only process text-like contents
        ctype = flow.response.headers.get("Content-Type", "").lower()
        raw = flow.response.raw_content

        if raw and any(t in ctype for t in ["text", "html", "json"]):
            new_content = raw
            for pattern, repl, t in REWRITE_RULES:
                if t in ctype:
                    new_content, n = pattern.subn(repl, new_content)
                    self.rewrite_count += n

            if new_content != raw:
                flow.response.raw_content = new_content
                # Update Content-Length only if present
                if "Content-Length" in flow.response.headers:
                    flow.response.headers["Content-Length"] = str(len(new_content))
                ctx.log.info(f"Rewrote content ({ctype}); total matches: {self.rewrite_count}")

        ctx.log.info(f"RESP {flow.response.status_code} {flow.request.url}")

addons = [GeorgeProxy()]
Let's run it:
mitmdump -s addon.py
[21:46:04.435] Loading script addon.py
[21:46:04.504] GeorgeProxy addon loaded.
[21:46:04.506] HTTP(S) proxy listening at *:8080.
[21:46:18.547][127.0.0.1:52128] client connect
[21:46:18.593] REQ GET http://httpbin.org/get
[21:46:18.768][127.0.0.1:52128] server connect httpbin.org:80 (52.44.182.178:80)
[21:46:18.910] RESP 200 http://httpbin.org/get
127.0.0.1:52128: GET http://httpbin.org/get
              << 200 OK 353b
[21:46:19.019][127.0.0.1:52128] client disconnect
[21:46:19.021][127.0.0.1:52128] server disconnect httpbin.org:80 (52.44.182.178:80)
Let's see the result:
curl -x http://127.0.0.1:8080 http://httpbin.org/get
{
  "args": {},
  "headers": {
    "Accept": "*/*",
    "Host": "httpbin.org",
    "Proxy-Connection": "Keep-Alive",
    "User-Agent": "curl/8.13.0",
    "X-Amzn-Trace-Id": "Root=1-692c9f0b-7eaf43e61f276ee62b089933",
    "X-Debug-Proxy": "mitm",
    "X-George-Tool": "true"
  },
  "origin": "84.117.220.94",
  "url": "http://httpbin.org/get"
}
This means
The request successfully went through mitmproxy running on 127.0.0.1:8080. Your addon worked: it injected the custom headers (X-Debug-Proxy, X-George-Tool). The httpbin.org echoed back the request details, showing exactly what the server received.

Python 3.13.0 : Tornado - part 001.

Python Tornado is a high‑performance web framework and asynchronous networking library designed for extreme scalability and real‑time applications. Its standout capability is handling tens of thousands of simultaneous connections efficiently, thanks to non‑blocking I/O.
This is an open source project actively maintained and available on tornadoweb.org.

Python Tornado – Key Capabilities

  • Massive Concurrency: Tornado can scale to tens of thousands of open connections without requiring huge numbers of threads.
  • Non‑blocking I/O: Its asynchronous design makes it ideal for apps that need to stay responsive under heavy load.
  • WebSockets Support: Built‑in support for WebSockets enables real‑time communication between clients and servers.
  • Long‑lived Connections: Perfect for long polling, streaming, or chat applications where connections remain open for extended periods.
  • Coroutines & Async/Await: Tornado integrates tightly with Python’s asyncio, allowing developers to write clean asynchronous code using coroutines.
  • Versatile Use Cases: Beyond web apps, Tornado can act as an HTTP client/server, handle background tasks, or integrate with other services.
Tornado setup: The script creates a web server using the Tornado framework, listening on port 8888.
Route definition: A single route /form is registered, handled by the FormHandler class.
GET request: When you visit http://localhost:8888/form, the server responds with an HTML page (form.html) that contains a simple input form.
POST request: When the form is submitted, the post() method retrieves the value of the name field using self.get_argument("name").
Response: The server then sends back a personalized message
Let's see the script:
import tornado.ioloop
import tornado.web
import os

class FormHandler(tornado.web.RequestHandler):
    def get(self):
        self.render("form.html")  # Render an HTML form

    def post(self):
        name = self.get_argument("name")
        self.write(f"Hello, {name}!")

def make_app():
    return tornado.web.Application([
        (r"/form", FormHandler),
    ],
    template_path=os.path.join(os.path.dirname(__file__), "templates")  # <-- aici
    )

if __name__ == "__main__":
    app = make_app()
    app.listen(8888)
    print("Server pornit pe http://localhost:8888/form")
    tornado.ioloop.IOLoop.current().start()

Thursday, October 23, 2025

Python 3.13.0 : OneByteRadar - pymem python package.

Today, I found this GitHub project about how to write to exe files with python programming language
The author say:
CS:GO radar hack achieved by patching one byte of game memory. Written in Python 3.
I don't test it, but good to know how can use these python modules.
The pymem Python library that allows you to interact with the memory of running Windows processes.
  • Reading and writing memory values of other processes
  • Scanning memory for byte patterns
  • Allocating and freeing memory inside another process
  • Accessing modules (DLLs) loaded by a process
  • This is often used in game hacking, automation, or debugging tools.
NOTE: I used artificial intelligence to write this simple example, it is more productive in programs with more complex syntax, but the basics of programming must be known...
Let's see one example with edge browser open:
import pymem
import pymem.process
import re

# Open the Edge process (make sure it's running)
pm = pymem.Pymem("msedge.exe")

# Get the main module of the process
module = pymem.process.module_from_name(pm.process_handle, "msedge.exe")
base = module.lpBaseOfDll
size = module.SizeOfImage

# Read the module's memory
data = pm.read_bytes(base, size)

# Search for a test pattern (generic example)
pattern = re.search(rb'\x48\x89\x5C\x24\x08\x57\x48\x83', data)

if pattern:
    address = base + pattern.start()
    print(f"Pattern found at: {hex(address)}")

    # Read 8 bytes from the found address
    raw = pm.read_bytes(address, 8)
    print("Raw bytes:", raw)

    # Interpret the bytes as a little-endian integer
    value = int.from_bytes(raw, byteorder='little')
    print("Integer value:", value)

    # Write a new value (e.g., 12345678)
    new_value = (12345678).to_bytes(8, byteorder='little')
    pm.write_bytes(address, new_value, 8)
    print("Value overwritten with 12345678.")

else:
    print("Pattern not found.")

# Close the process handle
pm.close_process()
What is that patern:
pattern = re.search(rb'\x48\x89\x5C\x24\x08\x57\x48\x83', data)
These bytes correspond to x86-64 assembly instructions. For example:

48 89 5C 24 08 → mov [rsp+8], rbx
57 → push rdi
48 83 → the start of an instruction like add/sub/cmp with a 64-bit operand
This sequence is typical for the prologue of a function in compiled C++ code — saving registers to the stack.
This is a simple example, you don't see anything in edge because is just one search and one overwritten:
python pymem_exemple_002.py
Pattern found at: 0x7ff7180cb3d5
Raw bytes: b'H\x89\\$\x08WH\x83'
Integer value: 9459906709773125960
Value overwritten with 12345678.
You replaced those 8 bytes with the integer 12345678, encoded as: 4E 61 BC 00 00 00 00 00 (in hex)
This corrupts the original instruction, which may crash Edge or cause undefined behavior.
Not crash, maybe my edge browser use protections (ASLR, DEP, CFG) that can make modification unstable.
--------
1. ASLR (Address Space Layout Randomization)
2. DEP (Data Execution Prevention)
3. CFG (Control Flow Guard)

Saturday, October 18, 2025

Blender 3D : ... simple clothing addon.

Today, I created a simple clothing addon with a two-mesh coat. The addon adds everything needed for the simulation including material types for the clothes.

Wednesday, September 24, 2025

Python 3.10.7 : Krita and python - part 002.

A simple source code to export PNG file for Godot game engine as Texture2D .
from krita import *
from PyQt5.QtWidgets import QAction, QMessageBox
import os

class ExportGodotPNG(Extension):
    def __init__(self, parent):
        super().__init__(parent)

    def setup(self):
        pass

    def export_png(self):
        # Get the active document
        doc = Krita.instance().activeDocument()
        if not doc:
            QMessageBox.warning(None, "Error", "No document open! Please open a document and try again.")
            return

        # Create an InfoObject for PNG export
        info = InfoObject()
        info.setProperty("alpha", True)  # Keep alpha channel for transparency
        info.setProperty("compression", 0)  # No compression for maximum quality
        info.setProperty("interlaced", False)  # Disable interlacing
        info.setProperty("forceSRGB", True)  # Force sRGB for Godot compatibility

        # Build the output file path
        if doc.fileName():
            base_path = os.path.splitext(doc.fileName())[0]
        else:
            base_path = os.path.join(os.path.expanduser("~"), "export_godot")
        output_file = base_path + "_godot.png"

        # Export the document as PNG
        try:
            doc.exportImage(output_file, info)
            # Show success message with brief usage info
            QMessageBox.information(None, "Success", 
                f"Successfully exported as PNG for Godot: {output_file}\n\n"
                "This PNG has no compression, alpha channel support, and sRGB for Godot compatibility. "
                "To use in Godot, import the PNG and adjust texture settings as needed."
            )
        except Exception as e:
            QMessageBox.critical(None, "Error", f"Export failed: {str(e)}")

    def createActions(self, window):
        # Create only the export action in Tools > Scripts
        action_export = window.createAction("export_godot_png", "Export Godot PNG", "tools/scripts")
        action_export.triggered.connect(self.export_png)

# Register the plugin
Krita.instance().addExtension(ExportGodotPNG(Krita.instance()))

Thursday, September 18, 2025

Blender 3D : ... addon add all materials from folder.

This is a simple addon for Blender 3D version 3.6.x version.
The addon search recursive all blend files from one folder and take all materials.
Let's see the script:
bl_info = {
    "name": "Append Materials from Folder",
    "author": "Grok",
    "version": (1, 2),
    "blender": (3, 0, 0),
    "location": "View3D > Sidebar > Append Materials",
    "description": "Select a folder and append all materials from .blend files recursively",
    "category": "Import-Export",
}

import bpy
import os
from bpy.types import Operator, Panel, PropertyGroup
from bpy.props import StringProperty, PointerProperty

class AppendMaterialsProperties(PropertyGroup):
    folder_path: StringProperty(
        name="Folder Path",
        description="Path to the folder containing .blend files",
        default="",
        maxlen=1024,
        subtype='DIR_PATH'
    )

class APPEND_OT_materials_from_folder(Operator):
    bl_idname = "append.materials_from_folder"
    bl_label = "Append Materials from Folder"
    bl_options = {'REGISTER', 'UNDO'}
    bl_description = "Append all materials from .blend files in the selected folder and subfolders"

    def execute(self, context):
        props = context.scene.append_materials_props
        folder_path = props.folder_path

        # Normalize path to avoid issues with slashes
        folder_path = os.path.normpath(bpy.path.abspath(folder_path))
        if not folder_path or not os.path.isdir(folder_path):
            self.report({'ERROR'}, f"Invalid or no folder selected: {folder_path}")
            return {'CANCELLED'}

        self.report({'INFO'}, f"Scanning folder: {folder_path}")
        blend_files_found = 0
        materials_appended = 0
        errors = []

        # Walk recursively through the folder
        for root, dirs, files in os.walk(folder_path):
            self.report({'INFO'}, f"Checking folder: {root}")
            for file in files:
                if file.lower().endswith('.blend'):
                    blend_files_found += 1
                    blend_path = os.path.join(root, file)
                    self.report({'INFO'}, f"Found .blend file: {blend_path}")
                    try:
                        # Open the .blend file to inspect materials
                        with bpy.data.libraries.load(blend_path, link=False) as (data_from, data_to):
                            if data_from.materials:
                                data_to.materials = data_from.materials
                                materials_appended += len(data_from.materials)
                                self.report({'INFO'}, f"Appended {len(data_from.materials)} materials from: {blend_path}")
                            else:
                                self.report({'WARNING'}, f"No materials found in: {blend_path}")
                    except Exception as e:
                        errors.append(f"Failed to process {blend_path}: {str(e)}")
                        self.report({'WARNING'}, f"Error in {blend_path}: {str(e)}")

        # Final report
        if blend_files_found == 0:
            self.report({'WARNING'}, f"No .blend files found in {folder_path} or its subfolders!")
        else:
            self.report({'INFO'}, f"Found {blend_files_found} .blend files, appended {materials_appended} materials.")
        if errors:
            self.report({'WARNING'}, f"Encountered {len(errors)} errors: {'; '.join(errors)}")

        return {'FINISHED'}

class VIEW3D_PT_append_materials(Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'UI'
    bl_category = "Append Materials"
    bl_label = "Append Materials from Folder"

    def draw(self, context):
        layout = self.layout
        props = context.scene.append_materials_props
        layout.prop(props, "folder_path")
        layout.operator("append.materials_from_folder", text="Append Materials")

def register():
    bpy.utils.register_class(AppendMaterialsProperties)
    bpy.utils.register_class(APPEND_OT_materials_from_folder)
    bpy.utils.register_class(VIEW3D_PT_append_materials)
    bpy.types.Scene.append_materials_props = PointerProperty(type=AppendMaterialsProperties)

def unregister():
    bpy.utils.unregister_class(VIEW3D_PT_append_materials)
    bpy.utils.unregister_class(APPEND_OT_materials_from_folder)
    bpy.utils.unregister_class(AppendMaterialsProperties)
    del bpy.types.Scene.append_materials_props

if __name__ == "__main__":
    register()

Monday, September 8, 2025

Python 3.13.0 : Script for python modules then installs them - updated with fix.

This script scans a folder full of .py files Python scripts, identifies all the external modules they import, filters out built-in ones, writes the installable ones to a requirements.txt file, and then installs them using pip—in parallel threads for speed.
I use the copilot and some comments are into my language, but I tested and works well:
NOTE: I updated with detection python modules based "from" and another issue: check if python module is instaled and step over that python module ...
This script will try to install many python modules, I can update to be better with these issues:
...some modules are default , some scripts are from another area, see Blender 3D with bpy python modules, some packages comes with same modules, this can be soleved with defined lists with unique items.
import subprocess
import sys
import os
import shutil
import importlib.util
import re
import concurrent.futures
from typing import List, Tuple, Set

class ModuleManager:
    def __init__(self):
        self.modules: Set[str] = set()
        self.pip_path = self._get_pip_path()

    def _get_pip_path(self) -> str:
        possible_path = os.path.join(sys.exec_prefix, "Scripts", "pip.exe")
        return shutil.which("pip") or (possible_path if os.path.exists(possible_path) else None)

    def extract_imports_from_file(self, file_path: str) -> List[Tuple[str, str]]:
        imports = []
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                for line in file:
                    # Detect 'import module'
                    import_match = re.match(r'^\s*import\s+([a-zA-Z0-9_]+)(\s+as\s+.*)?$', line)
                    if import_match:
                        module = import_match.group(1)
                        imports.append((module, line.strip()))
                        continue
                    
                    # Detect 'from module import ...'
                    from_match = re.match(r'^\s*from\s+([a-zA-Z0-9_]+)\s+import\s+.*$', line)
                    if from_match:
                        module = from_match.group(1)
                        imports.append((module, line.strip()))
        except FileNotFoundError:
            print(f"❌ Fișierul {file_path} nu a fost găsit.")
        except Exception as e:
            print(f"❌ Eroare la citirea fișierului {file_path}: {e}")
        return imports

    def scan_directory_for_py_files(self, directory: str = '.') -> List[str]:
        py_files = []
        for root, _, files in os.walk(directory):
            for file in files:
                if file.endswith('.py'):
                    py_files.append(os.path.join(root, file))
        return py_files

    def collect_unique_modules(self, directory: str = '.') -> None:
        py_files = self.scan_directory_for_py_files(directory)
        all_imports = []
        with concurrent.futures.ThreadPoolExecutor() as executor:
            future_to_file = {executor.submit(self.extract_imports_from_file, file_path): file_path for file_path in py_files}
            for future in concurrent.futures.as_completed(future_to_file):
                imports = future.result()
                all_imports.extend(imports)
        
        for module, _ in all_imports:
            self.modules.add(module)

    def is_module_installed(self, module: str) -> bool:
        return importlib.util.find_spec(module) is not None

    def run_pip_install(self, module: str) -> bool:
        if not self.pip_path:
            print(f"❌ Nu am găsit pip pentru {module}.")
            return False
        try:
            subprocess.check_call([self.pip_path, "install", module])
            print(f"✅ Pachetul {module} a fost instalat cu succes.")
            return True
        except subprocess.CalledProcessError as e:
            print(f"❌ Eroare la instalarea pachetului {module}: {e}")
            return False

    def check_and_install_modules(self) -> None:
        def process_module(module):
            print(f"\n🔎 Verific dacă {module} este instalat...")
            if self.is_module_installed(module):
                print(f"✅ {module} este deja instalat.")
            else:
                print(f"📦 Instalez {module}...")
                self.run_pip_install(module)
                # Re-verifică după instalare
                if self.is_module_installed(module):
                    print(f"✅ {module} funcționează acum.")
                else:
                    print(f"❌ {module} nu funcționează după instalare.")

        with concurrent.futures.ThreadPoolExecutor() as executor:
            executor.map(process_module, self.modules)

def main():
    print("🔍 Verific pip...")
    manager = ModuleManager()
    if manager.pip_path:
        print(f"✅ Pip este disponibil la: {manager.pip_path}")
    else:
        print("⚠️ Pip nu este disponibil.")
        return

    directory = sys.argv[1] if len(sys.argv) > 1 else '.'
    print(f"\n📜 Scanez directorul {directory} pentru fișiere .py...")
    manager.collect_unique_modules(directory)
    
    if not manager.modules:
        print("⚠️ Nu s-au găsit module în importuri.")
        return
    
    print(f"\nModule unice detectate: {', '.join(manager.modules)}")
    manager.check_and_install_modules()

if __name__ == "__main__":
    main()

Saturday, August 30, 2025

Python 3.13.0 : Predicted XAU/USD with torch.

Testing the torch python package
import torch
import torch.nn as nn
import numpy as np

data = np.array([
    [1800.5, 1810.0, 1795.0, 1000, 1805.2],
    [1805.2, 1815.0, 1800.0, 1200, 1812.8],
    [1812.8, 1820.0, 1808.0, 1100, 1810.5],
    [1810.5, 1818.0, 1805.0, 1300, 1825.0],
    [1825.0, 1830.0, 1815.0, 1400, 1820.3],
    [1820.3, 1828.0, 1810.0, 1250, 1835.7]
])

X, y = torch.tensor(data[:, :4], dtype=torch.float32), torch.tensor(data[:, 4], dtype=torch.float32)
model = nn.Sequential(nn.Linear(4, 6), nn.ReLU(), nn.Linear(6, 4), nn.ReLU(), nn.Linear(4, 1))
optimizer = torch.optim.Adam(model.parameters())
loss_fn = nn.MSELoss()
for _ in range(3000):
    optimizer.zero_grad()
    y_pred = model(X).squeeze()
    loss = loss_fn(y_pred, y)
    loss.backward()
    optimizer.step()
prediction = model(torch.tensor([[1830.0, 1840.0, 1825.0, 1150]], dtype=torch.float32))
print("Predicted XAU/USD closing price:", round(prediction.item(), 2))
The result is :
python torch_001.py
Predicted XAU/USD closing price: 1819.57

Python 3.13.0 : Predicted XAU/USD with tensorflow.

This is the source code :
import tensorflow as tf
import numpy as np

data = np.array([
    [1800.5, 1810.0, 1795.0, 1000, 1805.2],
    [1805.2, 1815.0, 1800.0, 1200, 1812.8],
    [1812.8, 1820.0, 1808.0, 1100, 1810.5],
    [1810.5, 1818.0, 1805.0, 1300, 1825.0],
    [1825.0, 1830.0, 1815.0, 1400, 1820.3],
    [1820.3, 1828.0, 1810.0, 1250, 1835.7]
])

X, y = data[:, :4], data[:, 4]
model = tf.keras.Sequential([
    tf.keras.layers.Dense(6, activation='relu', input_shape=(4,)),
    tf.keras.layers.Dense(4, activation='relu'),
    tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.fit(X, y, epochs=3000, verbose=0)
prediction = model.predict(np.array([[1830.0, 1840.0, 1825.0, 1150]]))
print("Predicted XAU/USD closing price:", round(prediction[0][0], 2))
The result is :
python tf_001.py
2025-08-30 21:11:13.966066: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
C:\Python313\Lib\site-packages\google\protobuf\runtime_version.py:98: UserWarning: Protobuf gencode version 5.28.3 is exactly one major version older than the runtime version 6.31.1 at tensorflow/core/framework/attr_value.proto. Please update the gencode to avoid compatibility violations in the next runtime release.
...
Predicted XAU/USD closing price: 2.9

Wednesday, August 27, 2025

Python 3.13.0 : Predicted XAU/USD with MLPRegressor.

Testing the MLPRegressor from sklearn python package:
from sklearn.neural_network import MLPRegressor
import numpy as np

data = np.array([
    [1800.5, 1810.0, 1795.0, 1000, 1805.2],
    [1805.2, 1815.0, 1800.0, 1200, 1812.8],
    [1812.8, 1820.0, 1808.0, 1100, 1810.5],
    [1810.5, 1818.0, 1805.0, 1300, 1825.0],
    [1825.0, 1830.0, 1815.0, 1400, 1820.3],
    [1820.3, 1828.0, 1810.0, 1250, 1835.7]
])

X, y = data[:, :4], data[:, 4]
model = MLPRegressor(hidden_layer_sizes=(6, 4), max_iter=3000)
model.fit(X, y)

prediction = model.predict([[1830.0, 1840.0, 1825.0, 1150]])
print("Predicted XAU/USD closing price:", round(prediction[0], 2))
The answer is: Predicted XAU/USD closing price: 1836.68