The relationship between the structure and a property of a chemical compound is an essential concept in chemistry guiding, for example, drug design. Actually, however, we need economic considerations to fully understand the fate of drugs...
moreThe relationship between the structure and a property of a chemical compound is an essential concept in chemistry guiding, for example, drug design. Actually, however, we need economic considerations to fully understand the fate of drugs on the market. We are performing here for the first time the exploration of quantitative structure-economy relationships (QSER) for a large dataset of a commercial building block library of over 2.2 million chemicals. This investigation provided molecular statistics that shows that on average what we are paying for is the quantity of matter. On the other side, the influence of synthetic availability scores is also revealed. Finally, we are buying substances by looking at the molecular graphs or molecular formulas. Thus, those molecules that have a higher number of atoms look more attractive and are, on average, also more expensive. Our study shows how data binning could be used as an informative method when analyzing big data in chemistry. What is the market value of a given molecule? How do economy and chemistry contribute to the price of a chemical compound and how can we measure these different contributions? The relationship between the structure and property is an essential concept in chemistry and this method is an important decision-making guide, for example, in drug design. Actually, however, we need economic considerations to fully understand the fate of drugs on the market. Economy controls all aspects of human behavior. In particular, in science it is probably as important as science itself in deciding research opportunities and directions as well as business R&D decisions. Market balances prices through demand and supply. Does this also work on the molecular market? How important is the contribution of the composition of a chemical to its price? Is there any influence of molecular complexity on the price and how can this be measured? Actually the prices of chemical substances have never been analyzed as a function of structure descriptors and the only analysis relates the prices of a small set of 300 common chemicals to the frequency with which they were recorded as a product or as a substrate in the Beilstein database 1,2. Here we analyzed the chemical and economic data for a chemical library registering over 2.2 million compounds , thus providing a wide representation of the chemical space, especially if we remember that the actual availability of a majority of the 100 million compounds registered in CAS is limited. These compounds in CAS were synthesized, then few properties were registered, but then these compounds usually are not on hand any more, unless their synthesis would be repeated. To the best of our knowledge this is the first study between economic and molecular descriptors that has ever been reported. Results Unlike in chemistry where we are familiar with the molar idea of molecular behavior, the market sells substances generally on a weight basis, similar to other goods. Thus, a typical economic property is the price for a certain weight unit given in $/g. In Fig. 1 we compare the idea of weight based metrics (WBM) vs. the molar based metric (MBM). MBM counts the number of molecules. If we, however, normalize by the amount of weight, then the atoms of the same total atomic weights can be arranged either into a single molecule of higher molecular weight (MW) or several smaller molecules of the lower MW. For example, we can arrange from a certain amount of