Plotly Express in Python

Plotly Express is a terse, consistent, high-level API for creating figures.


Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Try Plotly Studio now.

Overview

The plotly.express module (usually imported as px) contains functions that can create entire figures at once, and is referred to as Plotly Express or PX. Plotly Express is a built-in part of the plotly library, and is the recommended starting point for creating most common figures. Every Plotly Express function uses graph objects internally and returns a plotly.graph_objects.Figure instance. Throughout the plotly documentation, you will find the Plotly Express way of building figures at the top of any applicable page, followed by a section on how to use graph objects to build similar figures. Any figure created in a single function call with Plotly Express could be created using graph objects alone, but with between 5 and 100 times more code.

Plotly Express provides more than 30 functions for creating different types of figures. The API for these functions was carefully designed to be as consistent and easy to learn as possible, making it easy to switch from a scatter plot to a bar chart to a histogram to a sunburst chart throughout a data exploration session. Scroll down for a gallery of Plotly Express plots, each made in a single function call.

Here is a talk from the SciPy 2021 conference that gives a good introduction to Plotly Express and Dash:

Plotly Express currently includes the following functions:

High-Level Features

The Plotly Express API in general offers the following features:

Plotly Express in Dash

Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash, click "Download" to get the code and run python app.py.

Get started with the official Dash docs and learn how to effortlessly style & publish apps like this with Dash Enterprise or Plotly Cloud.

Out[2]:

The following set of figures is just a sampling of what can be done with Plotly Express.

Scatter, Line, Area and Bar Charts

Read more about scatter plots and discrete color.

In [3]:
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
fig.show()
In [4]:
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", marginal_y="violin",
           marginal_x="box", trendline="ols", template="simple_white")
fig.show()

Read more about error bars.

In [5]:
import plotly.express as px
df = px.data.iris()
df["e"] = df["sepal_width"]/100
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", error_x="e", error_y="e")
fig.show()

Read more about bar charts.

In [6]:
import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group")
fig.show()
In [7]:
import plotly.express as px
df = px.data.medals_long()

fig = px.bar(df, x="medal", y="count", color="nation",
             pattern_shape="nation", pattern_shape_sequence=[".", "x", "+"])
fig.show()

Read more about facet plots.

In [8]:
import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group", facet_row="time", facet_col="day",
       category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]})
fig.show()
In [9]:
import plotly.express as px
df = px.data.iris()
fig = px.scatter_matrix(df, dimensions=["sepal_width", "sepal_length", "petal_width", "petal_length"], color="species")
fig.show()

Read more about parallel coordinates and parallel categories, as well as continuous color.

In [10]:
import plotly.express as px
df = px.data.iris()
fig = px.parallel_coordinates(df, color="species_id", labels={"species_id": "Species",
                  "sepal_width": "Sepal Width", "sepal_length": "Sepal Length",
                  "petal_width": "Petal Width", "petal_length": "Petal Length", },
                    color_continuous_scale=px.colors.diverging.Tealrose, color_continuous_midpoint=2)
fig.show()
In [11]:
import plotly.express as px
df = px.data.tips()
fig = px.parallel_categories(df, color="size", color_continuous_scale=px.colors.sequential.Inferno)
fig.show()

Read more about hover labels.

In [12]:
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(df.query("year==2007"), x="gdpPercap", y="lifeExp", size="pop", color="continent",
           hover_name="country", log_x=True, size_max=60)
fig.show()

Read more about animations.

In [13]:
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
           size="pop", color="continent", hover_name="country", facet_col="continent",
           log_x=True, size_max=45, range_x=[100,100000], range_y=[25,90])
fig.show()

Read more about line charts.

In [14]:
import plotly.express as px
df = px.data.gapminder()
fig = px.line(df, x="year", y="lifeExp", color="continent", line_group="country", hover_name="country",
        line_shape="spline", render_mode="svg")
fig.show()