login
A390187
Minimum number of distinct consecutive sums of a permutation of [n].
0
0, 1, 3, 5, 7, 10, 13, 17, 20, 25, 30, 33, 39, 44, 50, 56, 63, 70, 77
OFFSET
0,3
COMMENTS
The corresponding maximum number is A389241(n).
LINKS
Thomas Bloom, Problem 34, Erdős Problems.
Erdős problems database contributors, Issue #95 linking Erdős problems to the OEIS.
Jakub Konieczny, On consecutive sums in permutations, arXiv:1504.07156 [math.CO], 2015-2021.
EXAMPLE
For n=5, {3, 4, 1, 2, 5} is a permutation having 10 distinct consecutive sums, namely 1, 2, 3=1+2, 4, 5=4+1, 3+4=4+1+2=2+5, 3+4+1=1+2+5, 3+4+1+2, 4+1+2+5, and 3+4+1+2+5.
For n=8, {7, 6, 2, 1, 4, 3, 5, 8} and its reversal are the unique permutations that have 20 distinct consecutive sums.
MATHEMATICA
a[n_] := Min[CountDistinct[Total/@Subsequences[#, {1, \[Infinity]}]]&/@Permutations[Range[n]]]; Array[a, 6, 0]
CROSSREFS
Sequence in context: A089108 A186355 A029899 * A072166 A077000 A195311
KEYWORD
nonn,hard,more
AUTHOR
Daniel Leary, Oct 28 2025
EXTENSIONS
a(16)-a(18) from Bert Dobbelaere, Nov 10 2025
STATUS
approved