login
A390181
Numbers not able to be represented in the form c*p^2+b for p prime, c >= 1 and 0 <= b < p.
1
1, 2, 3, 6, 7, 14, 15, 22, 23, 30, 31, 34, 35, 39, 42, 43, 58, 59, 62, 66, 67, 70, 71, 86, 87, 94, 95, 106, 107, 111, 114, 115, 134, 138, 139, 142, 143, 158, 159, 166, 167, 183, 186, 187, 194, 195, 206, 210, 211, 214, 215, 219, 222, 223, 230, 231, 238, 239, 255, 258, 259, 266, 267, 274
OFFSET
1,2
COMMENTS
Erdős stated that it "seems likely" that this sequence is infinite.
LINKS
Thomas Bloom, Problem 676, Erdős Problems.
P. Erdős, Some unconventional problems in number theory, Acta Math. Acad. Sci. Hungar. (1979), 77.
Erdős problems database contributors, Issue #135 linking Erdős problems to the OEIS.
MAPLE
N:= 500: # for terms <= N
S:= {$1..N}:
p:= 1:
do
p:= nextprime(p);
if p^2 > N then break fi;
S:= S minus {seq(seq(a*p^2+b, b=0..p-1), a=1.. N/p^2)}
od:
sort(convert(S, list)); # Robert Israel, Oct 28 2025
PROG
(Python)
import numpy as np
from sympy import primerange
from math import isqrt
def A390181_list(n_max):
sieve = np.zeros((n_max, ), dtype=bool)
for p in primerange(2, isqrt(n_max)+1):
for a in range(1, n_max//(p*p)+1):
sieve[a*p*p-1: a*p*p+p-1] = True
return [i+1 for i in range(n_max) if not sieve[i]]
CROSSREFS
Sequence in context: A172105 A092482 A335099 * A147303 A346593 A066880
KEYWORD
nonn
AUTHOR
Husnain Raza, Oct 28 2025
STATUS
approved