login
A389677
a(n) = A389676(n) - 2*prime(n).
1
1, 0, 2, -2, 0, -2, 2, 2, -4, 0, -4, -4, 2, 2, -2, -4, -2, -4, -2, 4, -2, 0, -4, -12, -10, -4, -2, 2, 10, -10, -10, -10, -2, -12, -8, -8, -14, -4, -8, -8, 0, -10, -6, -2, 8, -2, -18, -16, -8, -4, -8, -2, -10, -4, -10, -14, -2, -2, -2, 8, 2, -18, -12, 2
OFFSET
2,3
LINKS
Thomas Bloom, Problem #454, Erdős Problems.
P. Erdős, and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique (1980).
Carl Pomerance, The prime number graph, Math. Comp. (1979), 399-408.
FORMULA
A conjecture of Pomerance: lim sup (a(n)) = oo.
Pomerance proved lim sup (a(n)) >= 2.
a(n) = A389676(n) - A100484(n).
MATHEMATICA
a[n_]:=Min[Table[Prime[n-i]+Prime[n+i], {i, 1, n-1}]]-2Prime[n];
CROSSREFS
Sequence in context: A127527 A356583 A217943 * A177225 A236306 A153239
KEYWORD
sign,easy
AUTHOR
Elijah Beregovsky, Oct 10 2025
STATUS
approved