login
A389676
a(n) = Min_{0<i<n} (prime(n-i) + prime(n+i)).
1
7, 10, 16, 20, 26, 32, 40, 48, 54, 62, 70, 78, 88, 96, 104, 114, 120, 130, 140, 150, 156, 166, 174, 182, 192, 202, 212, 220, 236, 244, 252, 264, 276, 286, 294, 306, 312, 330, 338, 350, 362, 372, 380, 392, 406, 420, 428, 438, 450, 462, 470, 480, 492, 510, 516
OFFSET
2,1
LINKS
Thomas Bloom, Problem #454, Erdős Problems.
P. Erdős, and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique (1980).
Carl Pomerance, The prime number graph, Math. Comp. (1979), 399-408.
FORMULA
A conjecture of Pomerance: lim sup (a(n)-2*prime(n)) = oo.
Pomerance proved lim sup (a(n)-2*prime(n)) >= 2.
MATHEMATICA
a[n_]:=Min[Table[Prime[n-i]+Prime[n+i], {i, 1, n-1}]];
PROG
(PARI) a(n) = vecmin(vector(n-1, i, prime(n-i) + prime(n+i))); \\ Michel Marcus, Oct 11 2025
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Elijah Beregovsky, Oct 10 2025
STATUS
approved