login
A372040
Smallest k such that there is an n-element subset of {1, 2, ..., k} that does not contain a (nonempty) subset that sums to a square.
0
2, 3, 5, 8, 12, 18, 22, 34, 40, 62, 76, 85, 134
OFFSET
1,1
COMMENTS
Erdős showed that a(n) << n^3. Nguyen & Vu showed that there is some k such that n^3/log^k n << a(n), showing that the Erdős bound is optimal up to log factors.
LINKS
Thomas Bloom, Problem 587, Erdős Problems.
Erdős problems database contributors, Erdős problem database, see no. 587.
Hoi Nguyen and Van Vu, Squares in sumsets, arXiv:0811.1311 [math.CO], 2008-2009; In: Bárány, I., Solymosi, J., Sági, G. (eds) An Irregular Mind. Bolyai Society Mathematical Studies, vol 21. Springer, Berlin, Heidelberg.
FORMULA
n^3/log^k n << a(n) << n^3 for some constant k.
EXAMPLE
{1} is not a valid choice for n = 1 since 1 is a square. {2, 3, 5, 6} is not a valid choice for n = 4 since 3+6 is a square.
a(1) = 2: {2}
a(2) = 3: {2, 3}
a(3) = 5: {2, 3, 5}
a(4) = 8: {5, 6, 7, 8}
a(5) = 12: {3, 7, 8, 11, 12}
a(6) = 18: {2, 11, 13, 15, 17, 18}
a(7) = 22: {2, 13, 15, 17, 18, 20, 22}
a(8) = 34: {5, 6, 12, 17, 22, 23, 28, 34}
a(9) = 40: {6, 11, 17, 22, 23, 28, 29, 34, 40}
a(10) = 62: {6, 23, 29, 33, 37, 50, 54, 56, 60, 62}
a(11) = 76: {10, 13, 20, 33, 43, 46, 56, 59, 66, 69, 76}
a(12) = 85: {5, 14, 19, 33, 38, 47, 52, 61, 66, 71, 80, 85}
a(13) = 134: {11, 18, 29, 30, 47, 58, 65, 76, 87, 94, 105, 123, 134}
PROG
(PARI) do1(lim, startAt, v)=for(a=startAt, lim, for(i=1, #v, if(issquare(v[i]+a), next(2))); return([a])); 0
do(N, lim, startAt=2, v=[0])=lim\=1; if(N==1, return(do1(lim, startAt, v))); for(a=startAt, lim-N+1, my(u=List()); for(i=1, #v, my(t=v[i]+a); if(issquare(t), next(2)); listput(u, t)); my(t=do(N-1, lim, a+1, Set(concat(v, Vec(u))))); if(t, return(concat(a, t)))); 0
doexact(N, lim)=if(issquare(lim), return(0)); my(t=do(N-1, lim-1, 2, [0, lim])); if(t, concat(t, lim), 0)
CROSSREFS
Sequence in context: A111388 A127884 A105858 * A376995 A299731 A252864
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(13) from Charles R Greathouse IV, Apr 21 2024
STATUS
approved