OFFSET
1,2
COMMENTS
Vardi showed A000058(n) = floor(c^(2^(n+1))+1/2) where c=1.26408473...
Named after the Canadian mathematician Ilan Vardi (b. 1957). - Amiram Eldar, Jun 22 2021
This constant is transcendental. - Quanyu Tang, Mar 20 2025
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, exercise 4.37, p. 518.
Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991, pp. 82-89.
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Thomas Bloom, Problem 148 and Problem 315, Erdős Problems.
Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019).
Artūras Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, Ramanujan J, Vol. 57, 2022, pp. 569-581.
Erdős problems database contributors, Erdős problem database, see no. 148.
Steven Finch, Exercises in Iterational Asymptotics, arXiv:2411.16062 [math.NT], 2024. See p. 10.
Zheng Li and Quanyu Tang, On a conjecture of Erdős and Graham about the Sylvester's sequence, arXiv:2503.12277 [math.NT], 2025. See p. 3.
Benjamin Nill, Volume and lattice points of reflexive simplices, Discrete & Computational Geometry, Vol. 37, No. 2 (2007), pp. 301-320; arXiv preprint, arXiv:math/0412480 [math.AG], 2004-2007.
Wouter van Doorn and Quanyu Tang, The smallest denominator not contained in a unit fraction decomposition of 1 with fixed length, arXiv:2512.22083 [math.NT], 2025. See p. 2.
Eric Weisstein's World of Mathematics, Sylvester's Sequence.
FORMULA
Equals lim_{n->oo} A000058(n)^(1/2^(n+1)). - Robert FERREOL, Feb 15 2019
Equals sqrt((3/2) * Product_{k>=0} (1 + 1/(2*A000058(k)-1)^2)^(1/2^(k+1))). - Amiram Eldar, Jun 22 2021
EXAMPLE
1.26408473530530111307959958416466949111456...
MATHEMATICA
digits = 105; For[c = 2; olds = -1; s = 0; j = 1, RealDigits[olds, 10, digits+5] != RealDigits[s, 10, digits+5], j++; c = c^2-c+1, olds = s; s = s + 2^(-j-1)*Log[1+(2*c-1)^-2] // N[#, digits+5]&]; chi = Sqrt[6]/2*Exp[s]; RealDigits[chi, 10, digits] // First (* Jean-François Alcover, Jun 05 2014 *)
CROSSREFS
KEYWORD
AUTHOR
Benoit Cloitre, Nov 06 2002
STATUS
approved
