login
A073016
Decimal expansion of Sum_{n>=1} 1/binomial(2n,n).
11
7, 3, 6, 3, 9, 9, 8, 5, 8, 7, 1, 8, 7, 1, 5, 0, 7, 7, 9, 0, 9, 7, 9, 5, 1, 6, 8, 3, 6, 4, 9, 2, 3, 4, 9, 6, 0, 6, 3, 1, 2, 5, 8, 3, 2, 9, 0, 9, 4, 9, 7, 9, 0, 5, 6, 8, 2, 1, 9, 6, 6, 5, 2, 3, 0, 8, 4, 7, 1, 8, 1, 8, 0, 2, 8, 0, 7, 8, 6, 4, 0, 8, 1, 8, 6, 9, 4, 4, 4, 1, 8, 2, 4, 9, 0, 2, 2, 5, 9, 7, 4, 5, 8, 2, 7
OFFSET
0,1
REFERENCES
Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.q' pp. 247 and 439.
LINKS
Thomas Bloom, Problem 270, Erdős Problems.
Erdős problems database contributors, Erdős problem database, see no. 270.
Renzo Sprugnoli, Sums of Reciprocals of the Central Binomial Coefficients, INTEGERS, 6 (2006), #A27, page 9.
Eric Weisstein's World of Mathematics, Central Binomial Coefficient
FORMULA
Equals (9 + 2*sqrt(3)*Pi)/27.
Equals A091682 - 1.
Equals Integral_{x=0..Pi/2} cos(x)/(2 - cos(x))^2 dx. - Amiram Eldar, Aug 19 2020
From Bernard Schott, May 12 2022: (Start)
Equals Sum_{n>=1} (n!)^2 / (2*n)!.
Equals A248179 / 2. (End)
EXAMPLE
0.7363998587187150779097951683649234960631258329094979056821966523...
MATHEMATICA
RealDigits[ N[ (9 + 2*Sqrt[3]*Pi)/27, 110]] [[1]]
PROG
(PARI) (2*Pi*sqrt(3)+9)/27 \\ Michel Marcus, Aug 10 2014
(Magma)
m:= 510; R:=RealField(m); SetDefaultRealField(R);
Prune(Reverse(IntegerToSequence(Floor(( (9 + 2*Sqrt(3)*Pi(R))/27 )*10^(Floor(m/2)) )))); // G. C. Greubel, Sep 09 2025
(SageMath)
numerical_approx( (9 + 2*sqrt(3)*pi)/27 , digits=265 ) # G. C. Greubel, Sep 09 2025
CROSSREFS
Cf. A000984 (central binomial coefficients), A091682, A248179.
Sequence in context: A246203 A354627 A091682 * A238695 A019819 A215693
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Aug 03 2002
STATUS
approved