Papers by Revathi Raviadaran

Ultrasonics- Sonochemistry, 2018
This study aimed to formulate a stable palm oil-based water-in-oil (W/O) nano-emulsion. Emphasis ... more This study aimed to formulate a stable palm oil-based water-in-oil (W/O) nano-emulsion. Emphasis was placed on the effects of polyglycerol polyricinoleate (PGPR), medium chain triglyceride (MCT), lecithin and sodium chloride (NaCl) addition towards the stability of nano-emulsion. Among the performed analyses were mean droplet diameter (MDD), dispersity index (DI), critical micelle concentration (CMC), lipid peroxidation, viscosity , sedimentation index (SI) and surface morphology. The most stable optimized palm oil-based W/O nano-emulsion was produced using 61.25 wt% of palm oil, 26.25 wt% of MCT, 2.5 wt% of PGPR and 10 wt% of water (0.5 M of NaCl). The MDD and DI of the obtained W/O nano-emulsion were 143.1 ± 8.8 and 0.131 ± 0.094, respectively. After 2 weeks, no sedimentation was observed in W/O nano-emulsion with MDD and DI were 151.2 ± 6.5 nm and 0.156 ± 0.025 respectively. This study clearly found that polyricinoleate non-polar fatty acids of PGPR bound to non-polar fatty acids of palm oil through van der Waals intermolecular forces. While, polyglycerol polar head of PGPR interacts with water molecules through hydrogen bonding, as well as by the bound glyceride units of palm oil. The addition of NaCl further reduced MDD by 70 nm and improved the stability of nano-emulsion through electrostatic and steric repulsions attributed to the dissociation of Na + and Cl − ions. This study aids to widen the knowledge and interest on the utilization of palm oil for the generation of W/O nano-emulsion, as well as to better understand the interaction between palm oil and PGPR/NaCl in producing nano-emulsion.

LWT- Food Science and Technology, 2018
This study aims to produce and optimize palm oil-based nano-emulsion to encapsulate curcumin usin... more This study aims to produce and optimize palm oil-based nano-emulsion to encapsulate curcumin using micro-fluidizer and Response Surface Methodology (RSM). Encapsulation of curcumin is essential to overcome cur-cumin's poor bioavailability through the formation of nano-sized droplets in order to harvest its outstanding anti-inflammatory and anti-cancer medicinal properties. Among the parameters of concern are microfluidizer's pressure, number of cycles and surfactant concentration (Tween 80). Optimisations were performed by employing RSM. Characterisations were conducted for the droplet size, poly-dispersity index (PDI), zeta potential (ZP) and viscosity. Stable palm oil-based oil in water nano-emulsion encapsulating curcumin was achieved at a droplet size of 275.5 nm, PDI of 0.257, ZP of −36.2 and viscosity of 446 cP using microfluidizer. The optimized conditions were at 350 bar, 5 cycles and 1 wt% surfactant. Optimized microfluidizer with the aid of RSM is deemed capable to produce palm oil-based oil in water nano-emulsion encapsulating curcumin with small droplet size using low surfactant concentration and under optimum energy consumption.
Books by Revathi Raviadaran
Food Process Engineering and Quality Assurance, 2018
Uploads
Papers by Revathi Raviadaran
Books by Revathi Raviadaran