Papers by sithandiwe mazibuko-mbeje

Nutrients
Cardiovascular diseases (CVDs) continue to be the leading cause of death in people with diabetes ... more Cardiovascular diseases (CVDs) continue to be the leading cause of death in people with diabetes mellitus. Severely suppressed intracellular antioxidant defenses, including low plasma glutathione (GSH) levels, are consistently linked with the pathological features of diabetes such as oxidative stress and inflammation. In fact, it has already been established that low plasma GSH levels are associated with increased risk of CVD in people with diabetes. Dietary supplements are widely used and may offer therapeutic benefits for people with diabetes at an increased risk of developing CVDs. However, such information remains to be thoroughly scrutinized. Hence, the current systematic review explored prominent search engines, including PubMed and Google Scholar, for updated literature from randomized clinical trials reporting on the effects of dietary supplements on plasma GSH levels in people with diabetes. Available evidence indicates that dietary supplements, such as coenzyme Q10, seleni...
Disease progression promotes changes in adipose tissue signatures in type 2 diabetic (db/db) mice: The potential pathophysiological role of batokines
Life Sciences

Frontiers in Nutrition
BackgroundVitamin C is one of the most consumed dietary compounds and contains abundant antioxida... more BackgroundVitamin C is one of the most consumed dietary compounds and contains abundant antioxidant properties that could be essential in improving metabolic function. Thus, the current systematic review analyzed evidence on the beneficial effects of vitamin C intake on cardiovascular disease (CVD)-related outcomes in patients with diabetes or metabolic syndrome.MethodsTo identify relevant randomized control trials (RCTs), a systematic search was run using prominent search engines like PubMed and Google Scholar, from beginning up to March 2022. The modified Black and Downs checklist was used to assess the quality of evidence.ResultsFindings summarized in the current review favor the beneficial effects of vitamin C intake on improving basic metabolic parameters and lowering total cholesterol levels to reduce CVD-risk in subjects with type 2 diabetes or related metabolic diseases. Moreover, vitamin C intake could also reduce the predominant markers of inflammation and oxidative stress...
Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties
Critical Reviews in Food Science and Nutrition

Frontiers in Pharmacology
Moringa oleifera is one of the popular plants that have shown significant health benefits. Certai... more Moringa oleifera is one of the popular plants that have shown significant health benefits. Certainly, preclinical evidence (predominantly from animal models) summarized in the current review supports the beneficial effects of Moringa oleifera leaf extracts in combating the prominent characteristic features of diabetes mellitus. This includes effective control of blood glucose or insulin levels, enhancement of insulin tissue sensitivity, improvement of blood lipid profiles, and protecting against organ damage under sustained conditions of hyperglycemia. Interestingly, as major complications implicated in the progression of diabetes, including organ damage, Moringa oleifera leaf and seed extracts could efficiently block the detrimental effects of oxidative stress and inflammation in these preclinical models. Notably, these extracts (especially leaf extracts) showed enhanced effects in strengthening intracellular antioxidant defences like catalase, superoxide dismutase, and glutathione...

Impact of physical exercise and caloric restriction in patients with type 2 diabetes: Skeletal muscle insulin resistance and mitochondrial dysfunction as ideal therapeutic targets
Life Sciences, 2022
Skeletal muscle insulin resistance and mitochondrial dysfunction are some of the major pathologic... more Skeletal muscle insulin resistance and mitochondrial dysfunction are some of the major pathological defects implicated in the development of type 2 diabetes (T2D). Therefore, it has become necessary to understand how common interventions such as physical exercise and caloric restriction affect metabolic function, including physiological processes that implicate skeletal muscle dysfunction within a state of T2D. This review critically discusses evidence on the impact of physical exercise and caloric restriction on markers of insulin resistance and mitochondrial dysfunction within the skeletal muscle of patients with T2D or related metabolic complications. Importantly, relevant information from clinical studies was acquired through a systematic approach targeting major electronic databases and search engines such as PubMed, Google Scholar, and Cochrane library. The reported evidence suggests that interventions like physical exercise and caloric restriction, within a duration of approximately 2 to 4 months, can improve insulin sensitivity, in part by targeting the phosphoinositide 3-kinases/protein kinase B pathway in patients with T2D. Furthermore, both physical exercise and caloric restriction can effectively modulate markers related to improved mitochondrial function and dynamics. This was consistent with an improved modulation of mitochondrial oxidative capacity and reduced production of reactive oxygen species in patients with T2D or related metabolic complications. However, such conclusions are based on limited evidence, additional clinical trials are required to better understand these interventions on pathological mechanisms of T2D and related abnormalities.

Clinical use of N-acetyl cysteine during liver transplantation: Implications of oxidative stress and inflammation as therapeutic targets
Biomedicine & Pharmacotherapy, 2022
Currently, liver transplantation is considered as the definitive treatment option for individuals... more Currently, liver transplantation is considered as the definitive treatment option for individuals with complete liver failure. However, the detrimental effects of oxidative stress and inflammation remain the predominant feature that drives hepatic ischemia-reperfusion injury during liver transplantation. As such, therapeutic drugs that hinder oxidative stress and attenuate inflammation, have become ideal targets to curb liver injuries during transplantation. The current review analyses available clinical evidence on the importance of using N-acetyl cysteine (NAC) during liver transplantation. Thus, prominent online search engines such as PubMed and Google Scholar were accessed to retrieve literature from randomized clinical trials reporting on the use of NAC during liver transplantation. Overwhelming evidence suggests that established therapeutic properties of NAC, through enhancing endogenous antioxidants like glutathione to block oxidative stress and attenuate inflammation, remain essential to improve liver function in patients undergoing liver transportation. However, to the contrary, some clinical studies did not show any beneficial effects in patients receiving NAC during liver transplantation. Thus, such controversies, in addition to discussing the implications of oxidative stress and inflammation in relation to hepatic ischemia-reperfusion injury remain the major subject of the current review.

Oxidative Medicine and Cellular Longevity, 2021
Oxidative stress is a key pathological feature implicated in both acute and chronic liver disease... more Oxidative stress is a key pathological feature implicated in both acute and chronic liver diseases, including drug-induced liver injury (DILI). The latter describes hepatic injury arising as a direct toxic effect of administered drugs or their metabolites. Although still underreported, DILI remains a significant cause of liver failure, especially in developed nations. Currently, it is understood that mitochondrial-generated oxidative stress and abnormalities in phase I/II metabolism, leading to glutathione (GSH) suppression, drive the onset of DILI. N-Acetyl cysteine (NAC) has attracted a lot of interest as a therapeutic agent against DILI because of its strong antioxidant properties, especially in relation to enhancing endogenous GSH content to counteract oxidative stress. Thus, in addition to updating information on the pathophysiological mechanisms implicated in oxidative-induced hepatic injury, the current review critically discusses clinical evidence on the protective effects o...

Heart Failure Reviews, 2021
Emerging evidence suggests that epicardial fat thickness (EFT) may be a critical feature to under... more Emerging evidence suggests that epicardial fat thickness (EFT) may be a critical feature to understand cardiac health and determine the risk of heart failure. The current review critically assesses and discusses evidence on the efficiency of measuring EFT, in comparison to the well-known markers B-type natriuretic peptide (BNP) and its N-terminal fragment pro-B-type natriuretic peptide (NT-proBNP), as a prognostic and diagnostic approach in individuals with or at risk of heart failure. A systematic approach was undertaken to search major databases, PubMed, Scopus, Google Scholar and the Cochrane library to identify studies that quantified EFT and serum BNP/NT-proBNP levels in individuals with or at risk of heart failure. Twelve studies met the inclusion criteria and a total of 1983 participants were included in this systematic review. Evidence shows a clear association between increased EFT and elevated BNP/NT-proBNP levels in individuals with metabolic disease and suggests that bot...

Nutrients, 2020
Recent evidence shows that rooibos compounds, aspalathin and phenylpyruvic acid-2-O-β-d-glucoside... more Recent evidence shows that rooibos compounds, aspalathin and phenylpyruvic acid-2-O-β-d-glucoside (PPAG), can independently protect cardiomyocytes from hyperglycemia-related reactive oxygen species (ROS). While aspalathin shows more potency by enhancing intracellular antioxidant defenses, PPAG acts more as an anti-apoptotic agent. Thus, to further understand the protective capabilities of these compounds against hyperglycemia-induced cardiac damage, their combinatory effect was investigated and compared to metformin. An in vitro model of H9c2 cardiomyocytes exposed to chronic glucose concentrations was employed to study the impact of such compounds on hyperglycemia-induced damage. Here, high glucose exposure impaired myocardial substrate utilization by abnormally enhancing free fatty acid oxidation while concomitantly suppressing glucose oxidation. This was paralleled by altered expression of genes involved in energy metabolism including acetyl-CoA carboxylase (ACC), 5′ AMP-activate...

Molecules, 2021
The current study investigated the physiological effects of flavonoids found in daily consumed ro... more The current study investigated the physiological effects of flavonoids found in daily consumed rooibos tea, aspalathin, isoorientin, and orientin on improving processes involved in mitochondrial function in C2C12 myotubes. To achieve this, C2C12 myotubes were exposed to a mitochondrial channel blocker, antimycin A (6.25 µM), for 12 h to induce mitochondrial dysfunction. Thereafter, cells were treated with aspalathin, isoorientin, and orientin (10 µM) for 4 h, while metformin (1 µM) and insulin (1 µM) were used as comparators. Relevant bioassays and real-time PCR were conducted to assess the impact of treatment compounds on some markers of mitochondrial function. Our results showed that antimycin A induced alterations in the mitochondrial respiration process and mRNA levels of genes involved in energy production. In fact, aspalathin, isoorientin, and orientin reversed such effects leading to the reduced production of intracellular reactive oxygen species. These flavonoids further enh...

BMC Immunology, 2020
BackgroundChronic immune activation and hyperglycaemia are a hallmark of type 2 diabetes mellitus... more BackgroundChronic immune activation and hyperglycaemia are a hallmark of type 2 diabetes mellitus (T2D) while natural killer (NK) cells are involved in the pathogenesis of T2D. Dysregulated NK cell responses are associated with an increased risk of cardiovascular disease in patients living with T2D.ObjectiveTo provide a comprehensive and systematic evidence-based estimate on the levels of NK cells in patients living with T2D.ResultsThis systematic review and meta-analysis included 13 studies reporting on 491 adult patients with T2D and 1064 nondiabetic controls. The pooled effect estimates showed increased levels of NK cells in adult patients with T2D compared to controls (MD: 0.03 [− 3.20, 3.26], I2 = 97%,p < 0.00001).ConclusionOverall, the evidence presented in this systematic review shows that the changes in NK cells in patients living with T2D are still unclear and further studies are needed.
Impact of dyslipidemia in the development of cardiovascular complications: Delineating the potential therapeutic role of coenzyme Q10
Biochimie
Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: Updating the status of clinical evidence
Food & Function
Oxidative stress and inflammation remain the major complications implicated in the development an... more Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In...

Antioxidants
Excess epicardial adiposity, within a state of obesity and metabolic syndrome, is emerging as an ... more Excess epicardial adiposity, within a state of obesity and metabolic syndrome, is emerging as an important risk factor for the development of cardiovascular diseases (CVDs). Accordingly, increased epicardial fat thickness (EFT) implicates the exacerbation of pathological mechanisms involving oxidative stress and inflammation within the heart, which may accelerate the development of CVDs. This explains increased interest in targeting EFT reduction to attenuate the detrimental effects of oxidative stress and inflammation within the setting of metabolic syndrome. Here, we critically discuss clinical and preclinical evidence on the impact of physical exercise on EFT in correlation with reduced CVD risk within a setting of metabolic disease. This review also brings a unique perspective on the implications of oxidative stress and inflammation as major pathological consequences that link increased EFT to accelerated CVD risk in conditions of metabolic disease.

Muscle Cell and Tissue - Current Status of Research Field, Oct 10, 2018
Natural compounds, especially polyphenols have become a popular area of research mainly due to th... more Natural compounds, especially polyphenols have become a popular area of research mainly due to their apparent health benefits. Increasing the phenolic content of a diet, apart from its antioxidant benefit, has a beneficial effect on signaling molecules involved in carbohydrate and lipid metabolism. These effects could potentially protect against metabolic syndrome, a cluster of metabolic complications such as obesity, insulin resistance and type 2 diabetes that is characterized by a dysregulated carbohydrate, and lipid metabolism. Research continues to investigate various natural compounds for their amelioration of impaired signaling mechanisms that may lead to dysregulated metabolism to find means to improve the life expectancy of patients with metabolic syndrome. In this chapter, a systematic search through major databases such as MEDLINE/PubMed, EMBASE, and Google Scholar of literature reporting on the ameliorative potential of commonly investigated natural products that target skeletal muscle to ameliorate metabolic syndrome associated complications was conducted. The selected natural products that are discussed include apigenin, aspalathin, berberine, curcumin, epigallocatechin gallate, hesperidin, luteolin, naringenin, quercetin, resveratrol, rutin, and sulforaphane.
Tea consumption and its effects on primary and secondary prevention of coronary artery disease: Qualitative synthesis of evidence from randomized controlled trials
Clinical Nutrition ESPEN

Molecules
Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspal... more Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspalathus linearis) and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.75 mM) for 16 hrs. These insulin-resistant liver cells were treated with orientin (10 µM) for 3 h to assess the therapeutic effect of orientin. In addition to assessing the rate of metabolic activity, end point measurements assessed include the uptake or utilization of glucose and palmitate, as well as the expression of genes involved in insulin signaling and regulating cellular energy homeostasis. Our results showed that orientin effectively improved metabolic ...

Antioxidants
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic ... more Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regula...

Molecules
Polyphenols are naturally derived compounds that are increasingly being explored for their variou... more Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of t...
Uploads
Papers by sithandiwe mazibuko-mbeje