Tag: Transcriptome

We want to hear from you about changes to NIH’s Sequence Read Archive data format and storage

RFI_SRA_largeNIH’s Sequence Read Archive (SRA) is the largest, most diverse collection of next generation sequencing data from human, non-human and microbial sources. Hosted by the National Center for Biotechnology Information (NCBI) at the National Library of Medicine (NLM), SRA data is also available on the Google Cloud Platform (GCP) and Amazon Web Services (AWS) as part of the NIH Science and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) Initiative.

SRA currently contains more than 36 petabytes (PB) of data and is projected to grow to 43 PB by 2023. Though the value of this resource grows with each new sample, the exponential growth experienced over the last decade (Figure 1) threatens SRA sustainability. The storage footprint is growing more costly to maintain and the data more difficult to use at scale. The situation has reached a tipping point. SRA must be refactored to support FAIR data principles into the future.

Sra_growthFigure 1. SRA data has grown exponentially over the last decade.

NIH remains committed to the SRA and hopes to establish a long-range plan for sustained resource growth. Considerations include a model wherein normalized working files without Base Quality Scores (BQS) are readily available through cloud platforms and NCBI FTP sites, and larger source files and normalized files with base quality scores will be distributed on cloud platforms based on prevalent use cases and usage demands. Further details regarding data formats are available here.

It is critical that as an SRA user, you  participate in the review and testing of proposed data formats and infrastructure by commenting on how these developments impact your data usage. NIH has prepared a Request for Information (RFI) that details planned developments and would greatly appreciate feedback from the scientific community.

Continue reading “We want to hear from you about changes to NIH’s Sequence Read Archive data format and storage”

The Tasmanian Devil and Cancer as an Infectious Disease: Analysis of transcriptome data

The Tasmanian devil (Sarcophilus harrisii), the last remaining large marsupial carnivore, now faces extinction because of a strange and deadly infection: a transmissible cancer known as Devil Facial Tumor Disease.  These tumor infections are apparently passed to other devils through bites during mating or during squabbles over carrion when devils gather to feed. In this unusual situation, the cancer cells themselves are the infectious agent.

The failure of devil immune systems to recognize and destroy the foreign tumor cells may be related to a decline in genetic diversity and may serve as a warning about the vulnerability of species with reduced gene pools.  The advent of next-generation sequencing has provided an unprecedented opportunity to track the spread and identify the origin of this unusual zoonosis, as well as to examine the population structure of an endangered mammal and generate a complete genome sequence for this unique marsupial.

Continue reading “The Tasmanian Devil and Cancer as an Infectious Disease: Analysis of transcriptome data”