Stochastic bifurcation in a driven laser system: experiment and theory
Physical review. E, Statistical, nonlinear, and soft matter physics, 2004
We analyze the effects of stochastic perturbations in a physical example occurring as a higher-di... more We analyze the effects of stochastic perturbations in a physical example occurring as a higher-dimensional dynamical system. The physical model is that of a class- B laser, which is perturbed stochastically with finite noise. The effect of the noise perturbations on the dynamics is shown to change the qualitative nature of the dynamics experimentally from a stochastic periodic attractor to one of chaoslike behavior, or noise-induced chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius-Perron operator [L. Billings et al., Phys. Rev. Lett. 88, 234101 (2002)] to a model of the experimental system. Our main result is the identification of a global mechanism to induce chaoslike behavior by adding stochastic perturbations in a realistic model system of an optics experiment. In quantifying the stochastic bifurcation, we have computed a transition matrix describing the probability of transport from one region of phase space to another, which approxima...
Uploads
Papers by Lora Billings