Proceedings of The National Academy of Sciences, 1998
The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquiti... more The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquitination of the S phase cyclin-dependent kinase inhibitor SIC1. SCF is composed of three proteins--ySKP1, CDC53 (Cullin), and the F-box protein CDC4--that are conserved from yeast to humans. As part of an effort to identify components and substrates of a putative human SCF complex, we isolated hSKP1 in a two-hybrid screen with hCUL1, the closest human homologue of CDC53. Here, we show that hCUL1 associates with hSKP1 in vivo and directly interacts with both hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-like particle. Moreover, hCUL1 complements the growth defect of yeast cdc53ts mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. Taken together, these data suggest that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. Further application of biochemical assays similar to those described here can now be used to identify regulators/components of hCUL1-based SCF complexes, to determine whether the hCUL2-hCUL5 proteins also are components of ubiquitin ligase complexes in human cells, and to screen for chemical compounds that modulate the activities of the hSKP1 and hCUL1 proteins.
Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by... more Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by a mechanism that does not appear to require a reactive thiol. The highly conserved human HRT1 complements the lethality of hrt1⌬, and human HRT2 binds CUL-1. We conclude that Cdc53/Hrt1 comprise a highly conserved module that serves as the functional core of a broad variety of heteromeric ubiquitin ligases.
In S. cerevisiae, the G1/S transition requires Cdc4p, Cdc34p, Cdc53p, Skp1p, and the Cln/Cdc28p c... more In S. cerevisiae, the G1/S transition requires Cdc4p, Cdc34p, Cdc53p, Skp1p, and the Cln/Cdc28p cyclin-dependent kinase (Cdk). These proteins are thought to promote the proteolytic inactivation of the S-phase Cdk inhibitor Sic1p. We show here that Cdc4p, Cdc53p, and Skp1p assemble into a ubiquitin ligase complex named SCFCdc4p. When mixed together, SCFCdc4p subunits, E1 enzyme, the E2 enzyme Cdc34p, and ubiquitin are sufficient to reconstitute ubiquitination of Cdk-phosphorylated Sic1p. Phosphorylated Sic1p substrate is specifically targeted for ubiquitination by binding to a Cdc4p/Skp1p subcomplex. Taken together, these data illuminate the molecular basis for the G1/S transition in budding yeast and suggest a general mechanism for phosphorylation-targeted ubiquitination in eukaryotes.
... Craig C Correll & Anandan Palani Schering-Plough Research Institute, Departments of Neu... more ... Craig C Correll & Anandan Palani Schering-Plough Research Institute, Departments of Neurobiology and Medicinal Chemistry, 2015 Galloping Hill Road, Kenilworth NJ 07033, USA. [email protected]. Author for correspondence. ABSTRACT, Section: ...
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was e... more ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The molecular and pharmacological properties of adenosine receptors in the T24 human bladder epit... more The molecular and pharmacological properties of adenosine receptors in the T24 human bladder epithelial carcinoma cell line were assessed by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), Ca 2+ Flux, cAMP production and interleukin-8 measurements. RT-PCR experiments detected the presence of transcripts for the adenosine A 1 , A 2A and A 2B receptors but not for the adenosine A 3 subtype. Application of specific adenosine receptor ligands resulted in concentration-dependent increases in intracellular calcium ([Ca 2+ ] i ) with the following order of potency and EC 50 values: 5′-N-Ethylcarboxamidoadenosine (NECA) (1153 ± 214) > 5′-(N-Cyclopropyl)carboxamidoadenosine (CPCA) (1436 ± 186) > adenosine (4823 ± 932). This rank order of potency is typical of adenosine A 2B receptors. In addition, select adenosine receptor antagonists N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6 dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide (MRS 1706), 8-[4-[((4-Cyano[2,6-]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)-xanthine (MRS 1754), 1,3-Diethyl-8-phenylxanthine (DPCPX), 1,3-Diethyl-8-phenylxanthine (DPX), Alloxazine, 8-(3-Chlorostyryl)caffeine (CSC), and Theophylline blocked the NECA-induced calcium responses. Additionally, NECA, CPCA, and adenosine stimulated cAMP formation with a rank order of potency characteristic of adenosine A 2B receptors. The select adenosine A 2A antagonist, 5-amino-7-(phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) failed to antagonize the NECA response, whereas the potent and highly selective adenosine A 2B antagonists MRS 1754 and MRS 1706 inhibited NECA-stimulated cAMP production. Lastly, NECA-induced interleukin-8 secretion was inhibited by MRS 1754. Taken together, these data indicate that [Ca 2+ ] i accumulation and cAMP production as well as interleukin-8 secretion is mediated through the adenosine A 2B receptor in the T24 cell line.
Brandon CI, Vandenplas M, Dookwah H, Murray TF. Cloning and pharmacological characterization of t... more Brandon CI, Vandenplas M, Dookwah H, Murray TF. Cloning and pharmacological characterization of the equine adenosine A 3 receptor. J. vet. Pharmacol. Therap. 29, 255-263.
A series of spiro-piperidine azetidinone were synthesized and evaluated as potential TRPV1 antago... more A series of spiro-piperidine azetidinone were synthesized and evaluated as potential TRPV1 antagonists. An important issue of plasma stability was investigated and resolved. Further focused SAR study lead to the discovery of a potent antagonist with good oral pharmacokinetic profile in rat.
Transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific cation cha... more Transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific cation channel capable of integrating various noxious chemical and physical stimuli. The dog orthologue of TRPV1 was cloned using cDNA from nodose ganglia and heterologously expressed in HEK293(OFF) cells. At the amino acid level, dTRPV1 displays 85-89% sequence identity to other TRPV1 orthologues. Molecular pharmacological characterization of HEK293(OFF) cells expressing TRPV1 was assessed using a fluorescence imaging plate reader (FLIPR)-based calcium imaging assay. Dog TRPV1 was activated by various known TRPV1 agonists in a concentration-dependent manner: Ag23 = resiniferatoxin > olvanil approximately arvanil > capsaicin > phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) > N-oleoyldopamine (OLDA). In addition, select TRPV1 antagonists (capsazepine, I-resiniferatoxin and N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC)) were able to block the response of dTRPV1 to capsaicin. Furthermore, the dog TRPV1 lacked a conserved protein kinase A (PKA) phosphorylation site (117) found in other cloned orthologues, which may have physiological consequences on dog TRPV1 function. Taken together, these data constitute the first study of the cloning, expression and pharmacological characterization of dog TRPV1.
Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign mater... more Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, “codeine-like” drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current efforts in clinical validation of TRPV1 antagonists revolve around various pain indications; therefore, clinical evaluation of TRPV1 antagonists as antitussive agents will have to await those outcomes.
We examined the molecular pharmacology and in vivo effects of a TRPV1 receptor antagonist, N-(4-T... more We examined the molecular pharmacology and in vivo effects of a TRPV1 receptor antagonist, N-(4-Tertiarybutylphenyl)-4(3-cholorphyridin-2-yl)-tetrahydro-pyrazine1(2H) – carboxamide (BCTC) on the guinea pig TRPV1 cation channel. BCTC antagonized capsaicin-induced activation and PMA-mediated activation of guinea pig TRPV1 with IC50 values of 12.2 ± 5.2 nM, and 0.85 ± 0.10 nM, respectively. In addition, BCTC (100 nM) completely blocked the ability of heterologously expressed gpTRPV1 to respond to decreases in pH. Thus, BCTC is able to block polymodal activation of gpTRPV1. Furthermore, in nodose ganglia cells, capsaicin induced Ca2+ influx through TRPV1 channel was inhibited via BCTC in a concentration dependent manner. In in vivo studies capsaicin (10 – 300 μM) delivered by aerosol to the pulmonary system of non-sensitized guinea pigs produced an increase in cough frequency. In these studies, the tussigenic effects of capsaicin (300 μM) were blocked in a dose dependent fashion when BCTC (0.01–3.0 mg/kg, i.p.) was administered 30 minutes before challenge. The high dose of BCTC (3.0 mg/kg, i.p) produced a maximum inhibition of capsaicin-induced cough of 65%. We also studied the effects of BCTC (0.03 and 3.0) when administered 60 minutes before capsaicin. Under these conditions, BCTC (3.0 mg/kg, i.p) produced a maximum decrease in capsaicin-induced cough of 31%. In ovalbumin passively sensitized guinea pigs, we found that BCTC (1 and 3 mg/kg, i.p.) attenuated antigen ovalbumin (0.3%) cough responses by 27% and 60%, respectively. We conclude that TRPV1 channel activation may play role in cough mediated by antigen in sensitized guinea pigs. Our results supports increasing evidence that TRPV1 may play a role in the generation of the cough response.
Proceedings of The National Academy of Sciences, 1998
The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquiti... more The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquitination of the S phase cyclin-dependent kinase inhibitor SIC1. SCF is composed of three proteins--ySKP1, CDC53 (Cullin), and the F-box protein CDC4--that are conserved from yeast to humans. As part of an effort to identify components and substrates of a putative human SCF complex, we isolated hSKP1 in a two-hybrid screen with hCUL1, the closest human homologue of CDC53. Here, we show that hCUL1 associates with hSKP1 in vivo and directly interacts with both hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-like particle. Moreover, hCUL1 complements the growth defect of yeast cdc53ts mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. Taken together, these data suggest that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. Further application of biochemical assays similar to those described here can now be used to identify regulators/components of hCUL1-based SCF complexes, to determine whether the hCUL2-hCUL5 proteins also are components of ubiquitin ligase complexes in human cells, and to screen for chemical compounds that modulate the activities of the hSKP1 and hCUL1 proteins.
Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by... more Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by a mechanism that does not appear to require a reactive thiol. The highly conserved human HRT1 complements the lethality of hrt1⌬, and human HRT2 binds CUL-1. We conclude that Cdc53/Hrt1 comprise a highly conserved module that serves as the functional core of a broad variety of heteromeric ubiquitin ligases.
In S. cerevisiae, the G1/S transition requires Cdc4p, Cdc34p, Cdc53p, Skp1p, and the Cln/Cdc28p c... more In S. cerevisiae, the G1/S transition requires Cdc4p, Cdc34p, Cdc53p, Skp1p, and the Cln/Cdc28p cyclin-dependent kinase (Cdk). These proteins are thought to promote the proteolytic inactivation of the S-phase Cdk inhibitor Sic1p. We show here that Cdc4p, Cdc53p, and Skp1p assemble into a ubiquitin ligase complex named SCFCdc4p. When mixed together, SCFCdc4p subunits, E1 enzyme, the E2 enzyme Cdc34p, and ubiquitin are sufficient to reconstitute ubiquitination of Cdk-phosphorylated Sic1p. Phosphorylated Sic1p substrate is specifically targeted for ubiquitination by binding to a Cdc4p/Skp1p subcomplex. Taken together, these data illuminate the molecular basis for the G1/S transition in budding yeast and suggest a general mechanism for phosphorylation-targeted ubiquitination in eukaryotes.
... Craig C Correll & Anandan Palani Schering-Plough Research Institute, Departments of Neu... more ... Craig C Correll & Anandan Palani Schering-Plough Research Institute, Departments of Neurobiology and Medicinal Chemistry, 2015 Galloping Hill Road, Kenilworth NJ 07033, USA. [email protected]. Author for correspondence. ABSTRACT, Section: ...
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was e... more ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
The molecular and pharmacological properties of adenosine receptors in the T24 human bladder epit... more The molecular and pharmacological properties of adenosine receptors in the T24 human bladder epithelial carcinoma cell line were assessed by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), Ca 2+ Flux, cAMP production and interleukin-8 measurements. RT-PCR experiments detected the presence of transcripts for the adenosine A 1 , A 2A and A 2B receptors but not for the adenosine A 3 subtype. Application of specific adenosine receptor ligands resulted in concentration-dependent increases in intracellular calcium ([Ca 2+ ] i ) with the following order of potency and EC 50 values: 5′-N-Ethylcarboxamidoadenosine (NECA) (1153 ± 214) > 5′-(N-Cyclopropyl)carboxamidoadenosine (CPCA) (1436 ± 186) > adenosine (4823 ± 932). This rank order of potency is typical of adenosine A 2B receptors. In addition, select adenosine receptor antagonists N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6 dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide (MRS 1706), 8-[4-[((4-Cyano[2,6-]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)-xanthine (MRS 1754), 1,3-Diethyl-8-phenylxanthine (DPCPX), 1,3-Diethyl-8-phenylxanthine (DPX), Alloxazine, 8-(3-Chlorostyryl)caffeine (CSC), and Theophylline blocked the NECA-induced calcium responses. Additionally, NECA, CPCA, and adenosine stimulated cAMP formation with a rank order of potency characteristic of adenosine A 2B receptors. The select adenosine A 2A antagonist, 5-amino-7-(phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) failed to antagonize the NECA response, whereas the potent and highly selective adenosine A 2B antagonists MRS 1754 and MRS 1706 inhibited NECA-stimulated cAMP production. Lastly, NECA-induced interleukin-8 secretion was inhibited by MRS 1754. Taken together, these data indicate that [Ca 2+ ] i accumulation and cAMP production as well as interleukin-8 secretion is mediated through the adenosine A 2B receptor in the T24 cell line.
Brandon CI, Vandenplas M, Dookwah H, Murray TF. Cloning and pharmacological characterization of t... more Brandon CI, Vandenplas M, Dookwah H, Murray TF. Cloning and pharmacological characterization of the equine adenosine A 3 receptor. J. vet. Pharmacol. Therap. 29, 255-263.
A series of spiro-piperidine azetidinone were synthesized and evaluated as potential TRPV1 antago... more A series of spiro-piperidine azetidinone were synthesized and evaluated as potential TRPV1 antagonists. An important issue of plasma stability was investigated and resolved. Further focused SAR study lead to the discovery of a potent antagonist with good oral pharmacokinetic profile in rat.
Transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific cation cha... more Transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific cation channel capable of integrating various noxious chemical and physical stimuli. The dog orthologue of TRPV1 was cloned using cDNA from nodose ganglia and heterologously expressed in HEK293(OFF) cells. At the amino acid level, dTRPV1 displays 85-89% sequence identity to other TRPV1 orthologues. Molecular pharmacological characterization of HEK293(OFF) cells expressing TRPV1 was assessed using a fluorescence imaging plate reader (FLIPR)-based calcium imaging assay. Dog TRPV1 was activated by various known TRPV1 agonists in a concentration-dependent manner: Ag23 = resiniferatoxin > olvanil approximately arvanil > capsaicin > phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) > N-oleoyldopamine (OLDA). In addition, select TRPV1 antagonists (capsazepine, I-resiniferatoxin and N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC)) were able to block the response of dTRPV1 to capsaicin. Furthermore, the dog TRPV1 lacked a conserved protein kinase A (PKA) phosphorylation site (117) found in other cloned orthologues, which may have physiological consequences on dog TRPV1 function. Taken together, these data constitute the first study of the cloning, expression and pharmacological characterization of dog TRPV1.
Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign mater... more Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, “codeine-like” drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current efforts in clinical validation of TRPV1 antagonists revolve around various pain indications; therefore, clinical evaluation of TRPV1 antagonists as antitussive agents will have to await those outcomes.
We examined the molecular pharmacology and in vivo effects of a TRPV1 receptor antagonist, N-(4-T... more We examined the molecular pharmacology and in vivo effects of a TRPV1 receptor antagonist, N-(4-Tertiarybutylphenyl)-4(3-cholorphyridin-2-yl)-tetrahydro-pyrazine1(2H) – carboxamide (BCTC) on the guinea pig TRPV1 cation channel. BCTC antagonized capsaicin-induced activation and PMA-mediated activation of guinea pig TRPV1 with IC50 values of 12.2 ± 5.2 nM, and 0.85 ± 0.10 nM, respectively. In addition, BCTC (100 nM) completely blocked the ability of heterologously expressed gpTRPV1 to respond to decreases in pH. Thus, BCTC is able to block polymodal activation of gpTRPV1. Furthermore, in nodose ganglia cells, capsaicin induced Ca2+ influx through TRPV1 channel was inhibited via BCTC in a concentration dependent manner. In in vivo studies capsaicin (10 – 300 μM) delivered by aerosol to the pulmonary system of non-sensitized guinea pigs produced an increase in cough frequency. In these studies, the tussigenic effects of capsaicin (300 μM) were blocked in a dose dependent fashion when BCTC (0.01–3.0 mg/kg, i.p.) was administered 30 minutes before challenge. The high dose of BCTC (3.0 mg/kg, i.p) produced a maximum inhibition of capsaicin-induced cough of 65%. We also studied the effects of BCTC (0.03 and 3.0) when administered 60 minutes before capsaicin. Under these conditions, BCTC (3.0 mg/kg, i.p) produced a maximum decrease in capsaicin-induced cough of 31%. In ovalbumin passively sensitized guinea pigs, we found that BCTC (1 and 3 mg/kg, i.p.) attenuated antigen ovalbumin (0.3%) cough responses by 27% and 60%, respectively. We conclude that TRPV1 channel activation may play role in cough mediated by antigen in sensitized guinea pigs. Our results supports increasing evidence that TRPV1 may play a role in the generation of the cough response.
Uploads
Papers by Craig Correll