Papers by Nicholas Prindeze

Journal of Burn Care & Research, 2015
Burn conversion is a contributor to morbidity that currently has no quantitative measurement syst... more Burn conversion is a contributor to morbidity that currently has no quantitative measurement system. Active dynamic thermography (ADT) has recently been characterized for the early assessment of burn wounds and resolves the three-dimensional structure of materials by heat transfer analysis. As conversion is a product of physiological changes in three-dimensional structure, with subsequent modification of heat transfer properties, the authors hypothesize that ADT can specifically identify the process of burn conversion and serve as an important tool for burn care. A heated comb was used to create four contact burns separated by three interspaces on bilateral flanks of 18 rats, resulting in 144 burns and 108 interspaces. Wounds were imaged by ADT and laser Doppler imaging (LDI) pre- and post-injury through hour 36, with a subset undergoing biopsy collection. Direct analysis of thermographic and perfusion data revealed an increasing difference between burns and interspaces by ADT with increasing injury severity (P < .05), while LDI characterized the opposite. Comparison of stasis zones to burns reveals the ability of ADT to distinguish these two regions in both intermediate and deep burns at every assessment (P < .05). In addition, when wounds are grouped as converting or not converting, ADT identifies by hour 12, wounds that will convert (P < .05). LDI identifies by hour 4 wounds that will not (P < .05). This study has demonstrated that ADT can directly identify burn wound conversion, while LDI can identify nonconverting wounds. Further advancement of ADT technology has the potential to guide real-time interventional techniques.
Biophotonics South America, 2015

Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 2015
The ability to phenotype wounds for the purposes of assessing severity, healing potential and tre... more The ability to phenotype wounds for the purposes of assessing severity, healing potential and treatment is an important function of evidence-based medicine. A variety of optical technologies are currently in development for noninvasive wound assessment. To varying extents, these optical technologies have the potential to supplement traditional clinical wound evaluation and research, by providing detailed information regarding skin components imperceptible to visual inspection. These assessments are achieved through quantitative optical analysis of tissue characteristics including blood flow, collagen remodeling, hemoglobin content, inflammation, temperature, vascular structure and water content. Technologies that have, to this date, been applied to wound assessment include: near infrared imaging, thermal imaging, optical coherence tomography, orthogonal polarization spectral imaging, fluorescence imaging, laser Doppler imaging, microscopy, spatial frequency domain imaging, photoacou...

Eplasty, 2014
Drawtex's ability to remove pathogens and associated virulence factors has been demonstrated ... more Drawtex's ability to remove pathogens and associated virulence factors has been demonstrated in vitro. A model of burn wound infection was used to characterize the in vivo impact of this dressing on infection and wound healing. Paired burn wounds were created on the dorsum of Sprague Dawley rats and were inoculated with methicillin-resistant Staphylococcus aureus (MRSA). Animals were divided into 2 groups, half with wounds that received experimental dressing and the remaining half with control dressing-treated wounds. Dressings remained in place through 3, 6, 9, or 14 days after injury, and methicillin-resistant S aureus and virulence factors were quantified. Laser Doppler imaging was used to examine wound perfusion, and local host immune response was assessed through the quantification of mRNA expression. By day 3, less methicillin-resistant S aureus was measured in wounds treated with experimental-dressing compared to control-dressing wounds. Quantities remained lower in the e...

Journal of Burn Care & Research, 2014
Despite advances in perfusion imaging, burn wound imaging technology continues to lag behind that... more Despite advances in perfusion imaging, burn wound imaging technology continues to lag behind that of other fields. Quantification of blood flow is able to predict time for healing, but clear assessment of burn depth is still questionable. Active dynamic thermography (ADT) is a noncontact imaging modality capable of distinguishing tissue of different thermal conductivities. Utilizing the abnormal heat transfer properties of the burn zones, we examined whether ADT was useful in the determination of burn depth in a model of early burn wound evaluation. Duroc pigs (castrated male; n = 3) were anesthetized, and two burns were created with an aluminum billet at 3 and 12 seconds. These contact times resulted in superficial partial and deep partial thickness burn wounds, respectively. ADT and laser Doppler imaging (LDI) imaging were performed every 30 minutes postburn for a total of five imaging sessions ending 150 minutes postburn. For ADT, imaging excitation was performed for 42-120 seconds with dual quartz-infrared lamps, and subsequent infrared image capture was performed for 300 seconds. MATLAB-assisted image analysis was performed to determine burn zone region of interest thermal relaxation and characteristic patterns. LDI was performed with a moorLDI system, and biopsies were captured for histology following the 150-minute imaging session. Both ADT and LDI imaging modalities are able to detect different physical properties at 30, 60, 90 120, and 150 minutes postburn with statistical significance (P < 0.05). Resultant ADT cooling curves characterize greater differences with greater stimulation and a potentially more identifiable differential cooling characteristic. Histological analysis confirmed burn depth. This preliminary work confirms that ADT can measure burn depth and is deserving of further research either as a stand-alone imaging technology or in combination with a device to assess perfusion.

Journal of Burn Care & Research, 2015
Using a validated swine model of human scar formation, hyperpigmented and hypopigmented scar samp... more Using a validated swine model of human scar formation, hyperpigmented and hypopigmented scar samples were examined for their histological and optical properties to help elucidate the mechanisms and characteristics of dyspigmentation. Full-thickness wounds were created on the flanks of red Duroc pigs and allowed to heal. Biopsies from areas of hyperpigmentation, hypopigmentation, and uninjured tissue were fixed and embedded for histological examination using Azure B and primary antibodies to S100B, HMB45, and α-melanocyte-stimulating hormone (α-MSH). Spatial frequency domain imaging (SFDI) was then used to examine the optical properties of scars. Hyperpigmentation was first noticeable in healing wounds around weeks 2 to 3, gradually becoming darker. There was no significant difference in S100B staining for the presence of melanocytes between hyperpigmented and hypopigmented scar samples. Azure B staining of melanin was significantly greater in histological sections from hyperpigmented areas than in sections from both uninjured skin and hypopigmented scar (P < .0001). There was significantly greater staining for α-MSH in hyperpigmented samples compared with hypopigmented samples (P = .0121), and HMB45 staining was positive for melanocytes in hyperpigmented scar. SFDI at a wavelength of 632 nm resulted in an absorption coefficient map correlating with visibly hyperpigmented areas of scars. In a red Duroc model of hypertrophic scar formation, melanocyte number is similar in hyperpigmented and hypopigmented tissues. Hyperpigmented tissues, however, show a greater amount of melanin and α-MSH, along with immunohistochemical evidence of stimulated melanocytes. These observations encourage further investigation of melanocyte stimulation and the inflammatory environment within a wound that may influence melanocyte activity. Additionally, SFDI can be used to identify areas of melanin content in mature, pigmented scars, which may lead to its usefulness in wounds at earlier time points before markedly apparent pigmentation abnormalities. (J Burn Care Res 2015;36:77-86)
Lab Animal, 2012
Domesticated porcine species are commonly used in studies of wound healing, owing to similarities... more Domesticated porcine species are commonly used in studies of wound healing, owing to similarities between porcine skin and human skin. Such studies often involve wound dressings, and keeping these dressings intact on the animal can be a challenge. The authors describe a novel and simple technique for constructing a fitted neoprene garment for pigs that covers dressings and maintains their integrity during experiments.

Journal of Burn Care & Research, 2014
The authors investigated whether the application of platelet-derived growth factor (PDGF) to dono... more The authors investigated whether the application of platelet-derived growth factor (PDGF) to donor site wounds would speed healing in a porcine model. In a red duroc pig model, three wounds that were 3 inches × 3 inches were created with a dermatome (0.06-inch depth) on one side of two different animals. These wounds were digitally and laser Doppler (LDI) imaged and biopsied immediately pre- and postwound creation and every 2 days for 2 weeks. A set of identical wounds were subsequently created on the opposite side of the same animals and treated with topical PDGF (becaplermin gel 0.01%, 4 g/wound) immediately on wounding. PDGF-treated wounds were imaged and biopsied as above. Digital images of wounds were assessed for epithelialization by clinicians using an ordinal scale. Perfusion units (PU) were evaluated by LDI. Wound healing was evaluated by hematoxylin and eosin histological visualization of an epithelium and intact basement membrane. First evidence of partial epithelialization was seen in control and PDGF-treated wounds within 7.7 ± 1.4 and 6.4 ± 1.1 days postwounding, respectively (P=.03). Completely epithelialized biopsies were seen in control and PDGF-treated wounds at 11.7 ± 2.6 and 9.6 ± 1.5 days, respectively (P=.02). Clinician evaluation of digital images showed that on day 9, control wounds were, on average, 48.3 ± 18.5% epithelialized vs 57.2 ± 20.2% epithelialized for PDGF-treated wounds. At day 16, control wounds showed an average of 72.9 ± 14.6% epithelialization and PDGF-treated wounds showed an average of 90 ± 11.8%epithelialization. Overall, PDGF-treated wounds had statistically significantly higher scores across all timepoints (P=.02). Average perfusion units as measured by LDI were similar for control and PDGF-treated wounds at time of excision (225 ± 81and 257 ± 100, respectively). On day 2 postwounding, average PU for control wounds were 803 and were 764 for PDGF-treated wounds. Control wounds maintained higher PU values compared with PDGF-treated wounds at all time points and returned to excision PU values by day 12.2 ± 1.1 postwounding. PDGF-treated wounds reached the same values by day 9.7 ± 2.3 (P=.03). The authors conclude that topical PDGF speeds time to epithelialization of partial-thickness wounds in a porcine model as evidenced by histology, clinical appearance, and time to return to prewounding vascularity.

Journal of Burn Care & Research, 2014
High-voltage electrical injuries are a devastating form of trauma often treated in burn centers. ... more High-voltage electrical injuries are a devastating form of trauma often treated in burn centers. Examining superficial wounds alone may lead to an inaccurate assessment of local, regional, and systemic severity of injury. In this work, the neurovasculature at sites regionally distinct from the contact wound were assessed for cellular pathology. Nine male Sprague-Dawley rats subjected to 1000 V direct-current shocks were separated into three groups: high-shock (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;10-second contact), low-shock (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;4-second contact), and control. Injury video was captured with a forward-looking infrared camera, and a thermal excitation analysis was performed. The neurovascular bundles from the iliofemoral region to the distal posterior tibial region were dissected from the hind limbs of the shocked animals and stained by immunohistochemistry for antibodies specific to apoptosis (APO) 1, caspase-3, activating transcription factor 3, high-mobility group box-1, granulocyte-macrophage colony-stimulating factor and interleukin-6. Real-time reverse-transcription polymerase chain reaction was used to quantify differential transcript levels of superoxide dismutases 1, 2, and 3 and heat-shock protein 70 from peripheral blood mononuclear cells and liver tissue. Finally, a protein array was used to identify key inflammatory cytokines in blood plasma. Significant dose-dependent trends were identified in apoptotic markers as well as inflammatory markers in both arterial and nerve tissues. Although arterial tissue exhibited a gradual decline in these markers proximally from the wound site, nerve tissue maintained a constant level at every location. Transcript analysis revealed an up-regulation of extracellular superoxide dismutase, and down-regulation of heat-shock protein 70, whereas plasma inflammatory cytokine levels indicated no significant changes. Thermal excitation analysis revealed a linear temperature increase, with a dose-dependent thermal maximum. In this study the authors have shown that neurovascular APO and inflammation are present at locations extremely proximal to electrical injury contact sites and this appears to be dose-dependent. Nerve tissue APO and inflammation may extend farther proximally than the iliofemoral region, and multiple proapoptotic mechanisms may be activated. No systemic inflammatory response was indicated in this study.
Experimental Biology and Medicine, 2012
Five decades after the first documented use of a laser for wound healing, research in light thera... more Five decades after the first documented use of a laser for wound healing, research in light therapy has yet to elucidate the underlying biochemical pathways causing its effects. The aim of this review is to summarize the current research into the biochemical mechanisms of light therapy in order to better direct future studies. The implication of cytochrome c oxidase as the photoacceptor modulating light therapy is reviewed, as are the predominant hypotheses of the biochemical pathways involved in the stimulation of wound healing, cellular proliferation, production of transcription factors and other reported stimulatory effects.

Diagnostic Microbiology and Infectious Disease, 2014
Bacterial infection in burn patients is still a devastating contributor to morbidity and mortalit... more Bacterial infection in burn patients is still a devastating contributor to morbidity and mortality. Little is known regarding the presence of staphylococcal toxins in the burn-injured patient. The aim of this study was to characterize the prevalence of several of these toxins and their relationship to clinical metrics and mortality in burn patients. Levels of exotoxins staphylococcal enterotoxin A (SEA), staphylococcal enterotoxin B, toxic shock syndrome toxin 1 (TSST-1), and α-hemolysin were assayed from the serum of 207 adult burn patients aged 16-92 years. Clinical, demographic, and microbiological data from these patients were then compared to toxin levels. Staphylococcal exotoxins α-hemolysin and SEA were present in 45% and 25% of the population, respectively. Bacterial cultures concomitantly showed a high prevalence of Staphylococcus aureus in 48% of patients, of which 59% were methicillin resistant. Several metrics may be predictive of high toxin concentrations of α-hemolysin and TSST-1 and SEA including burn size, length of stay, and bacteremia. Mortality associations indicated that burn size, bacteremia, age, and the presence of α-hemolysin and SEA may be predictors of mortality. A high prevalence of staphylococcal toxin α-hemolysin and superantigens TSST-1 and SEA can be found in the circulation of the adult burn population. The presence of these toxins may contribute to the morbidity and mortality of the burn patient.

Journal of Burn Care & Research, 2014
The duroc pig has been described as a promising animal model for use in the study of human wound ... more The duroc pig has been described as a promising animal model for use in the study of human wound healing and scar formation. However, little is known about the presence and chronology of the fibrocyte cell population in the healing process of these animals. Wounds known to form scar were created on red duroc swine (3&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; x 3&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;) with a dermatome to a total depth of either 0.06 inches or 0.09 inches. These wounds were allowed to heal completely and biopsies were done at scheduled time points during the healing process. Biopsies were formalin fixed and paraffin embedded for immunohistochemical analysis. Porcine reactive antibodies to CD-45 and procollagen-1 and a human reactive antibody to LSP-1 were used to detect the presence of fibrocytes in immunohistochemistry, an immunocytochemistry. Initial immunohistochemical studies showed evidence of a biphasic presence of fibrocytes. Pigs with 0.06 inches deep wounds showed positive staining for CD-45 and LSP-1 within highly cellular areas at days 2 and 4 after wounding. Additional animals with 0.09 inches deep wounds showed positive staining within similar areas at days 56, 70, and 113 after wounding. There was no immunohistochemical evidence of fibrocytes in skin biopsies taken at days 14, 28, or 42. Procollagen-1 staining was diffused in all samples. Cultured cells were stained for CD-45, LSP-1, and procollagen-1 by immunocytochemistry. These data confirm that fibrocytes are indeed present in this porcine model. We conclude that these cells are present after initial wounding and later during scar formation and remodeling. We believe that this is an evidence of a biphasic presence of fibrocytes, first as an acute response to skin wounding followed by later involvement in the remodeling process, prompted by continued inflammation in a deep partial thickness wound.
Uploads
Papers by Nicholas Prindeze