answersLogoWhite

0

how does ahp use eigen values and eigen vectors

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What the difference between eigenvalue and eigenvector?

An eigenvalue is a scalar that indicates how much an eigenvector is stretched or compressed during a linear transformation represented by a matrix. In contrast, an eigenvector is a non-zero vector that remains in the same direction after the transformation, only scaled by the eigenvalue. Mathematically, for a square matrix (A), if (A\mathbf{v} = \lambda \mathbf{v}), then (\lambda) is the eigenvalue and (\mathbf{v}) is the corresponding eigenvector.


What are eigenvalues and eigenvectors?

An eigenvector is a vector which, when transformed by a given matrix, is merely multiplied by a scalar constant; its direction isn't changed. An eigenvalue, in this context, is the factor by which the eigenvector is multiplied when transformed.


What is an eigenvalue?

If a linear transformation acts on a vector and the result is only a change in the vector's magnitude, not direction, that vector is called an eigenvector of that particular linear transformation, and the magnitude that the vector is changed by is called an eigenvalue of that eigenvector.Formulaically, this statement is expressed as Av=kv, where A is the linear transformation, vis the eigenvector, and k is the eigenvalue. Keep in mind that A is usually a matrix and k is a scalar multiple that must exist in the field of which is over the vector space in question.


What is the eigen value?

This is the definition of eigenvectors and eigenvalues according to Wikipedia:Specifically, a non-zero column vector v is a (right) eigenvector of a matrix A if (and only if) there exists a number λ such that Av = λv. The number λ is called the eigenvalue corresponding to that vector. The set of all eigenvectors of a matrix, each paired with its corresponding eigenvalue, is called the eigensystemof that matrix


What does eigenvalues mean?

Well in linear algebra if given a vector space V,over a field F,and a linear function A:V->V (i.e for each x,y in V and a in F,A(ax+y)=aA(x)+A(y))then ''e" in F is said to be an eigenvalue of A ,if there is a nonzero vector v in V such that A(v)=ev.Now since every linear transformation can represented as a matrix so a more specific definition would be that if u have an NxN matrix "A" then "e" is an eigenvalue for "A" if there exists an N dimensional vector "v" such that Av=ev.Basically a matrix acts on an eigenvector(those vectors whose direction remains unchanged and only magnitude changes when a matrix acts on it) by multiplying its magnitude by a certain factor and this factor is called the eigenvalue of that eigenvector.

Related Questions

What the difference between eigenvalue and eigenvector?

An eigenvalue is a scalar that indicates how much an eigenvector is stretched or compressed during a linear transformation represented by a matrix. In contrast, an eigenvector is a non-zero vector that remains in the same direction after the transformation, only scaled by the eigenvalue. Mathematically, for a square matrix (A), if (A\mathbf{v} = \lambda \mathbf{v}), then (\lambda) is the eigenvalue and (\mathbf{v}) is the corresponding eigenvector.


What are eigenvalues and eigenvectors?

An eigenvector is a vector which, when transformed by a given matrix, is merely multiplied by a scalar constant; its direction isn't changed. An eigenvalue, in this context, is the factor by which the eigenvector is multiplied when transformed.


What is the relationship between eigenvalue and mutual information?

I'm seeking the answer too. What's the meaning of the principal eigenvector of an MI matrix?


What is an eigenvalue?

If a linear transformation acts on a vector and the result is only a change in the vector's magnitude, not direction, that vector is called an eigenvector of that particular linear transformation, and the magnitude that the vector is changed by is called an eigenvalue of that eigenvector.Formulaically, this statement is expressed as Av=kv, where A is the linear transformation, vis the eigenvector, and k is the eigenvalue. Keep in mind that A is usually a matrix and k is a scalar multiple that must exist in the field of which is over the vector space in question.


What are eigen values and eigen vectors?

This is a complicated subject, which can't be explained in a few words. Read the Wikipedia article on "eigenvalue"; or better yet, read a book on linear algebra. Briefly, and quoting from the Wikipedia, "The eigenvectors of a square matrix are the non-zero vectors that, after being multiplied by the matrix, remain parallel to the original vector. For each eigenvector, the corresponding eigenvalue is the factor by which the eigenvector is scaled when multiplied by the matrix."


What has the author S Srinathkumar written?

S Srinathkumar has written: 'Eigenvalue/eigenvector assignment using output feedback' -- subject(s): Mathematical models, Control systems, Airplanes


What is the significance of an eigenvalue being zero in the context of linear algebra?

In linear algebra, an eigenvalue being zero indicates that the corresponding eigenvector is not stretched or compressed by the linear transformation. This means that the transformation collapses the vector onto a lower-dimensional subspace, which can provide important insights into the structure and behavior of the system being studied.


What is the significance of the maximal eigenvalue in the context of matrix analysis and how does it impact the overall properties of the matrix?

The maximal eigenvalue of a matrix is important in matrix analysis because it represents the largest scalar by which an eigenvector is scaled when multiplied by the matrix. This value can provide insights into the stability, convergence, and behavior of the matrix in various mathematical and scientific applications. Additionally, the maximal eigenvalue can impact the overall properties of the matrix, such as its spectral radius, condition number, and stability in numerical computations.


What is the significance of the unit eigenvector in the context of linear algebra and eigenvalues?

In linear algebra, the unit eigenvector is important because it represents a direction in which a linear transformation only stretches or shrinks, without changing direction. It is associated with an eigenvalue, which tells us the amount of stretching or shrinking that occurs in that direction. This concept is crucial for understanding how matrices behave and for solving systems of linear equations.


What is the eigen value?

This is the definition of eigenvectors and eigenvalues according to Wikipedia:Specifically, a non-zero column vector v is a (right) eigenvector of a matrix A if (and only if) there exists a number λ such that Av = λv. The number λ is called the eigenvalue corresponding to that vector. The set of all eigenvectors of a matrix, each paired with its corresponding eigenvalue, is called the eigensystemof that matrix


What does eigenvalues mean?

Well in linear algebra if given a vector space V,over a field F,and a linear function A:V->V (i.e for each x,y in V and a in F,A(ax+y)=aA(x)+A(y))then ''e" in F is said to be an eigenvalue of A ,if there is a nonzero vector v in V such that A(v)=ev.Now since every linear transformation can represented as a matrix so a more specific definition would be that if u have an NxN matrix "A" then "e" is an eigenvalue for "A" if there exists an N dimensional vector "v" such that Av=ev.Basically a matrix acts on an eigenvector(those vectors whose direction remains unchanged and only magnitude changes when a matrix acts on it) by multiplying its magnitude by a certain factor and this factor is called the eigenvalue of that eigenvector.


How eigenvalues are calculated?

An eigenvector of a square matrix Ais a non-zero vector v that, when the matrix is multiplied by v, yields a constant multiple of v, the multiplier being commonly denoted by lambda. That is: Av = lambdavThe number lambda is called the eigenvalue of A corresponding to v.


How to find the largest eigenvalue of a matrix?

To find the largest eigenvalue of a matrix, you can use methods like the power iteration method or the QR algorithm. These methods involve repeatedly multiplying the matrix by a vector and normalizing the result until it converges to the largest eigenvalue.


How do you say shower in Thai?

The word for shower is Ang Ahp Nahm. To take a shower is to By Ahp Nahm.


What actors and actresses appeared in Wawd Ahp - 2014?

The cast of Wawd Ahp - 2014 includes: Steve Girard as Rapper


What are the release dates for Wawd Ahp - 2014?

Wawd Ahp - 2014 was released on: USA: 18 January 2014 (Slamdance Film Festival)


What is the significance of the max eigenvalue in determining the stability of a system?

The maximum eigenvalue is important in determining the stability of a system because it indicates how quickly the system will reach equilibrium. If the maximum eigenvalue is less than 1, the system is stable and will converge to a steady state. If the maximum eigenvalue is greater than 1, the system is unstable and may exhibit oscillations or diverge over time.


Is eigenvalue of any operator must be real?

No.


What does it signify when an eigenvalue of a matrix is equal to 0?

When an eigenvalue of a matrix is equal to 0, it signifies that the matrix is singular, meaning it does not have a full set of linearly independent eigenvectors.


What is the Mayan word for Hunter?

It is ahp ú (it is one word)