Computational-Statistical Gaps in Reinforcement Learning

Daniel Kane* Sihan Liu
University of California, San Diego University of California, San Diego
dakane@eng.ucsd.edu sil046@ucsd.edu
Shachar Lovett" Gaurav Mahajan
University of California, San Diego University of California, San Diego
slovettl@cs.ucsd.edu gmahajan@eng.ucsd.edu

February 13, 2022

Abstract

Reinforcement learning with function approximation has recently achieved tremendous results in
applications with large state spaces. This empirical success has motivated a growing body of theoreti-
cal work proposing necessary and sufficient conditions under which efficient reinforcement learning is
possible. From this line of work, a remarkably simple minimal sufficient condition has emerged for
sample efficient reinforcement learning: MDPs with optimal value function V* and Q* linear in some
known low-dimensional features. In this setting, recent works have designed sample efficient algorithms
which require a number of samples polynomial in the feature dimension and independent of the size of
state space. They however leave finding computationally efficient algorithms as future work and this is
considered a major open problem in the community.

In this work, we make progress on this open problem by presenting the first computational lower
bound for RL with linear function approximation: unless NP=RP, no randomized polynomial time algo-
rithm exists for deterministic transition MDPs with a constant number of actions and linear optimal value
functions. To prove this, we show a reduction from UNIQUE-S AT, where we convert a CNF formula into
an MDP with deterministic transitions, constant number of actions and low dimensional linear optimal
value functions. This result also exhibits the first computational-statistical gap in reinforcement learn-
ing with linear function approximation, as the underlying statistical problem is information-theoretically
solvable with a polynomial number of queries, but no computationally efficient algorithm exists unless
NP=RP. Finally, we also prove a quasi-polynomial time lower bound under the Randomized Exponential
Time Hypothesis.

1 Introduction

Function approximation has a long history in reinforcement learning [???] and game playing [??]. More
recently, this merger of reinforcement learning’s algorithmic techniques with supervised learning’s gener-
alization schemes has achieved tremendous results in various applications with large state spaces, in areas
such as game playing [???], robotics [?] and biology [?]. Since, one would expect the statistical and com-
putational demand for these algorithms to grow at least linearly with the size of the state space [?], it is quite
surprising that these algorithms generalize so well in large state spaces. That said, the computational re-
quirements for existing algorithms have become exceedingly high. For example, AlphaZero was trained on

*Supported by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fellowship.
"Supported by NSF Award CCF-1909634.

5000 tensor processing units (TPUs) for 13 days [?] and OpenAl Five trained its DOTA2 bots using 128000
CPUs [?] for 180 days (10 months in real time). This leads to a natural fundamental question: are such data
and compute requirements fundamental or can we design efficient algorithms for these applications? More
generally: what minimal properties of environments leads to efficient RL algorithms?

Over the last decade, this question has driven a growing body of theoretical work showing when sample
efficiency is possible in RL for particular model classes, such as State Aggregation [??], Linear MDPs [??],
Linear Mixture MDPs [??], Reactive POMDPs [?], Block MDPs [?], FLAMBE [?], Reactive PSRs [?],
Linear Bellman Complete [??]. More generally, there are also a few lines of work which propose general
frameworks, consisting of structural conditions which permit sample efficient RL; these include the Bellman
rank [?], Witness rank [?], Bilinear Classes [?] and Bellman Eluder [?]. The goal in these latter works is
to develop a unified theory of generalization in RL, analogous to the more classical notions in statistical
complexity (e.g. VC-theory and Rademacher complexity) relevant for supervised learning.

A surprisingly minimal assumption which arose from these works is Linear Q*&V™* [?] where both
optimal value function V* and optimal action-value function Q* are linear in some known low-dimensional
features. ? showed that in this setting, there exists sample efficient RL algorithms which regardless of the
number of actions require a number of samples polynomial in the feature dimension and independent of the
size of the state space. However, when only either V* or Q* are linear, a series of works [????] showed
that a phase transition occurs as one increases the number of actions: sample efficient algorithms exist for
constant number of actions, and quickly transform into information theoretic exponential lower bounds as
the number of actions exceeds the dimension of the features underlying Q* or V'*.

Even though we have made considerable progress in understanding the minimal assumptions from the
statistical perspective, the computational aspect of this problem is largely unknown. All the settings men-
tioned above (except under strong assumptions like linear transitions [?] and deterministic rewards [?]) do
not have computationally efficient algorithms and previous works [???] leave designing computationally
efficient algorithms as an important open problem. On the other hand, in spite of failed search for such
computationally efficient algorithms over the last few years, there are no computational lower bounds for
any of these settings (although previous attempts [?] have shown inefficiency of specific algorithms) and
this is considered a major open problem in the community.

1.1 Our Contributions

In this work, we present the first computational lower bounds for RL with linear function approximation.
Before stating our main results, we first need to state some key definitions that we use throughout the paper.

Markov Decision Process (MDP). We first define the framework for reinforcement learning, a Markov
Decision Process (MDP). We define a deterministic MDP as a tuple M = (S, A, R, P), where S is the state
space, A is the action space, R : S x A — A([0, 1]) is the stochastic reward functionﬂ, andP:SxA— S
is the deterministic transition function. An MDP M defines a discrete time sequential decision process
where the agent starts from a starting state sg € S. Then, at each time ¢, the agent at some current state St,
takes action Ay, receiving reward R, ~ R(S;, A;) and transitions to next state Sy 1. This goes on till the
agent reaches the end state L. Each such trajectory/path from starting state s to end state L is of length
at most horizon H. A deterministic, stationary policy 7 : S — A specifies a decision-making strategy in
which the agent chooses actions adaptively based on the current state, i.e. A; = 7(S;). Given a policy 7
and a state-action pair (s,a) € S x A, the Q-function and V -function under a policy 7 are defined as

T—1 T—1
VT(s) =E | > R(S, Ar) | So = s,ﬁ] , Q7(s,a) =E |> R(S,A)|So=s4=a7|, (1)
t=0 t=0

'A([0, 1]) denotes the set of all distributions over interval [0, 1].

2

where S1, A1, ...S;_1, A;_1 are obtained by executing policy 7 in the MDP M and 7 is the first time when
policy 7 reaches the end state L, that is S, = L where it always holds that 7 < H. We use Q* and V* to
denote the optimal value functions

V*(s) =supV™(s), Q%(s,a)=supQ™(s,a), se€S,acA

We say that the optimal value functions V* and QQ* can be written as a linear function of d-dimensional
features ¢ : SU (S x .A) — R? if for all state s and action a, V*(s) = (0,4 (s)) and Q*(s,a) = (0,1 (s,a))
for some fixed # € R? independent of s and a.

Computational Problems. We next introduce 3-SAT, a satisfiability problem for 3-CNF formulas. In a
3-SAT problem, we are given as input, a 3-CNF formula ¢ with v variables and O(v) clauses and our goal
is to decide if ¢ is satisfiable. Our computational lower bound is based on a reduction from UNIQUE-3-SAT,
a variant of 3-SAT. UNIQUE-3-SAT is the promise version of 3-SAT where the given formula is promised
to have either 0 or 1 satisfying assignments.

The focus of this work is the computational RL problem, LINEAR-k-RL. In a LINEAR-k-RL problem
with feature dimension d, we are given access to a deterministic MDP M with k actions and horizon H =
O(d) such that the optimal value functions Q* and V* can be written as a linear function of d-dimensional
features v). Our goal is to output a good policy, which we define as any policy 7 that satisfies V™ > V*—1/4.
Note that here V™ and V* refers to the value of the policy 7 and optimal policy respectively at the starting
state and is always in [0, H]|?| Moreover, the constant 1/4 can be replaced by any arbitrary constant < 1.
From now on, we always assume number of actions k is 2 or 3.

Complexity problem LINEAR-k-RL

Oracle: a deterministic MDP M with k actions, optimal value functions V* and Q* linear in d
dimensional features 1) and horizon H = O(d).
Goal: find policy 7 such that V™ > V* — 1/4.

We now describe how the algorithm interacts with the MDP. We assume that the algorithm has access to
the associated (i) reward function R, (ii) transition function P and (iii) features 1. For all these functions,
the algorithm provides a state s and action a (if needed) and receives a random sample from the distribution
R(s,a) (for the reward function), the state P(s,a) (for the transition function) or feature 1(s) or ¥ (s, a)
(for the features). We assume that each call accrues constant runtime and input/output for these functions
are of size polynomial in feature dimension d.

We will often talk about randomized algorithm A solving a problem in time ¢ with error probability p.
By this we mean (i) A runs in time O(t); (ii) for satisfiability problems, it returns YES on positive input
instances with probability at least 1 — p and returns NO on negative input instances with probability 1; and
(iii) for RL problem, it returns a good policy with probability at least 1 — p.

1.1.1 No polynomial time algorithm for LINEAR-2-RL

With these considerations in mind, we present our main result that asserts that unless NP=RP, no random-
ized polynomial time algorithm can find a good policy in deterministic MDPs with a constant number of
actions and linear optimal value functions.

Theorem 1.1 (LINEAR-2-RL € RP = NP=RP). Unless NP=RP, no randomized algorithm can solve
LINEAR-2-RL with feature dimension d in time polynomial in d with error probability 1/10.

%in our constructions, we satisfy the more stringent condition that V* € [0, 1].

This resolves the open problem from ? and ? by showing that unless RP=NP, no polynomial time
randomized algorithm exists for deterministic transition MDPs with a constant number of actions and linear
optimal value functions.

Our main technical contribution is a reduction from UNIQUE-3-SAT to LINEAR-3-RL such that a poly-
nomial time algorithm for LINEAR-3-RL implies a polynomial time algorithm for UNIQUE-3-SAT. To
achieve this, we use the input for UNIQUE-3-SAT: a 3-CNF formula ¢ with v variables, to design an
input for LINEAR-3-RL: an MDP M, with 3 actions and optimal value functions V* and Q* linear in d-
dimensional features. On a high level, the MDP is constructed such that each state represents an assignment
to the UNIQUE-3-SAT variables and the goal is to “search” for the solution to the UNIQUE-3-SAT instance.
In particular, at each state, the 3 actions available to the agent correspond to an unsatisfied clause which
ensures at least one action available to the agent decreases the distance to the solution. To incentivize find-
ing the solution, a large reward is awarded on reaching the solution and a very small expected reward on
reaching the horizon (this reward is small enough that any polynomial time RL algorithm only receives
0 reward with high probability on reaching the horizon). This ensures that (i) finding a good policy also
finds the satisfying assignment of ¢ and (ii) the optimal value functions V* and Q* are linear in some low
dimensional features. We present this construction in Section 2]

To get lower bounds for LINEAR-2-RL, we use the same construction as above with a small modifica-
tion. We replace the choice of 3 actions a1, as and a3 at every state with a depth-2 binary tree, where the
first action is a1 and the second action leads to a new state which has actions a2 and ag. This allows us to
simulate the hard 3-action MDP using a 2-action MDP while increasing our feature dimension d by at most
a quadratic factor. We present this construction in Section

These reductions allow us to simulate a polynomial time algorithm for UNIQUE-3-SAT on input ¢ by
running the polynomial time algorithm for LINEAR-2-RL on MDP M,,. More formally, our reduction gives
a polynomial relationship between the complexity of UNIQUE-3-SAT and LINEAR-2-RL: a polynomial d?
time algorithm for LINEAR-2-RL implies a polynomial vO(@®) time algorithm for UNIQUE-3-SAT.

Proposition 1.2. Suppose ¢ > 1. If LINEAR-2-RL with feature dimension d can be solved in time d?
with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time vO@) with error
probability 1/8.

This relates the complexity of UNIQUE-3-SAT to LINEAR-2-RL and LINEAR-3-RL. To relate these
problems to complexity class NP, we use a seminal result from ? which showed that uniqueness of solution
can not be used to solve search problems quickly. In particular, they showed a randomized polynomial time
reduction from 3-SAT to UNIQUE-3-SAT.

Theorem 1.3 (Valiant-Vazirani Theorem). Unless NP=RP, no polynomial time randomized algorithm can
solve UNIQUE-3-SAT with error probability 1/8.

Combining our reduction with Valiant-Vazirani Theorem proves our main result-Theorem

1.1.2 Quasi-Polynomial Lower Bound for LINEAR-2-RL

We now present computational lower bound under a strengthening of NP = RP conjecture, Randomized
Exponential Time Hypothesis (rETH) [?], which asserts that probabilistic algorithms can not decide if a
given 3-SAT problem with v variables and O(v) clauses is satisfiable in sub-exponential time.

Definition 1.4 (Randomized Exponential Time Hypothesis (rETH)). There is a constant ¢ > 0 such that
no randomized algorithm can decide 3-SAT with v variables in time 2V with error probability 1/2.

Randomized Exponential Time Hypothesis along with many variants motivated by Exponential Time
Hypothesis [?] have been influential in discovering hardness results for a variety of problems see, e.g.

4

??. Under Randomized Exponential Time Hypothesis, our main result is a quasi-polynomial computational
lower bound for learning good policies in deterministic MDPs with linear optimal value functions.

Theorem 1.5 (Quasi-polynomial lower bound for LINEAR-2-RL). Under rETH, no randomized algo-
rithm can solve LINEAR-2-RL with feature dimension d in time d°(°8d/108108d) ywith error probability
1/10.

This improves over our super-polynomial lower bound albeit depending on a much stronger hardness
assumption. To prove this result, we use a different choice of parameters in our reduction and set the feature
dimension d to be sub-exponential in the number of variables v to get the following:

Proposition 1.6. If LINEAR-2-RL with feature dimension d can be solved in time d°(08d/10glogd) sy
error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time 20(v/108v) yith error
probability 1/8.

Here its important to note that we can not use Valiant-Vazirani Theorem to relate UNIQUE-3-SAT and
3-SAT, since it is consistent with Valiant-Vazirani Theorem that UNIQUE-3-SAT is solvable in 2V time
but 3-SAT takes 2% time. Therefore, we use a more refined lower bound for UNIQUE-3-SAT from ? which
showed that if UNIQUE-3-SAT with v variables can be solved in time 2%? for every a > 0, then so can
k-SAT for all £ > 3.

Theorem 1.7 (?). Assuming rETH is true, there exists a constant ¢ > 0 such that no randomized algorithm
can solve UNIQUE-3-SAT with v variables in time 2V with error probability 1/2.

In conjunction with our reduction, this gives a quasi-polynomial lower bound for LINEAR-2-RL under
rETH. We leave as an open problem if the techniques introduced in this work can be used to prove an
exponential lower bound for LINEAR-2-RL under rETH.

Our results give evidence that even though having linear optimal value functions is sufficient for sample
efficient reinforcement learning ?, it is not sufficient for computationally efficient reinforcement learning.
More assumptions are required for computationally efficient algorithms, in addition to optimal value func-
tions @* and V* being linear in low-dimensional features, for example sub-optimality gap [?]. We hope that
this work will open up new research avenues for finding minimal sufficient conditions for computationally
efficient reinforcement learning. We now discuss a few further notable implications of this work.

» Computational-Statistical Gap: There are many problems which exhibit computational-statistical
gaps i.e. regimes where the underlying statistical problem is information theoretically possible but
no computationally efficient algorithm exists. Examples include community detection [???], planted
clique [??] and sparse principal component analysis [??]. To the best of our knowledge, our compu-
tational lower bound is the first computational-statistical gap in reinforcement learning with function
approximation. When both optimal value functions Q* and V* are linear, MDPs with any number of
actions are statistically easy to solve [?] but our results show that no polynomial time algorithm can
solve these MDPs even with a constant number of actions, unless NP=RP.

* Natural Problem in NP \ P: There has been quite a lot of recent work in complexity theory literature
on proving quasi-polynomial lower bounds based on Exponential Time Hypothesis (for e.g. dense
constraint satisfaction problems [?], approximating best nash equilibrium [?] and approximating
densest k-subgraph with perfect completeness [?]). This work adds RL with deterministic transition,
linear bounded optimal value functions V*, Q* and constant number of actions as another natural
problem in NP but not in P unless NP=RP.

Remainder of this paper. In Section [2] and Section [3] we present our lower bound constructions for 3
action and 2 action MDPs respectively.

2 Lower Bound for MDPs with 3 actions

In this section, we will prove the reduction, Proposition [2.T|and Proposition [2.2] restated versions of Propo-
sition and Proposition for LINEAR-3-RL. The overall idea is to first build a randomized algorithm
Agar which can decide UNIQUE-3-SAT using a randomized algorithm A7, which solves LINEAR-3-RL.
The two reductions only differ in their settings of parameters.

In the first setting, which we use to prove that no polynomial time algorithm exists for LINEAR-3-RL,
we set the feature dimension d to be polynomial in the number of variables v. Under this setting, we can
build a polynomial time randomized algorithm for UNIQUE-3-SAT using a polynomial time randomized
algorithm for LINEAR-3-RL.

Proposition 2.1. Suppose ¢ > 1. If LINEAR-3-RL with feature dimension d can be solved in time d? with
error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time O(v8q+16q2) with error
probability 1/8.

In the second setting, which we use to prove a quasi-polynomial lower bound for LINEAR-3-RL, we set
the feature dimension d to be sub-exponential in the number of variables v. This allows us to transform an
exponential time lower bound for UNIQUE-3-SAT into a quasi-polynomial lower bound for LINEAR-3-RL.

Proposition 2.2. If LINEAR-3-RL with feature dimension d can be solved in time d°8?/(32loglogd) sy
error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time 20(v/1ogv) \with error
probability 1/8.

Before we prove these results, we give a brief outline of our reduction from UNIQUE-3-SAT to LINEAR-
3-RL. On a high level, we construct an MDP where the goal is to ”search” for the solution w* to a UNIQUE-
3-SAT instance with v variables. In particular, at each time, the agent is given an unsatisfied clause and
asked to flip assignment for a variable present in the clause. Notice that since the clause is unsatisfied, there
must be at least one variable whose assignment differs from the solution and therefore, the agent can “reach”
the solution in at most d(w, w*) steps. To incentivize the agent, if the agents at time [finds the solution i.e.
w = w”* or reaches the end of the MDP i.e. [= H, it receives reward according to the following degree-r
polynomial

g(l’w):<1_ H+v

We show how to build an MDPs from a UNIQUE-3-SAT instance in Section 2.1} Furthermore, we show
that the optimal value functions V* and Q* for the constructed MDP are linear in d = O(v")-dimensional
features. Since the expected reward at last layer of the MDP is O(v_’"Q) (which can be replaced with 0 for
any poly(d) time RL algorithm), the only non-zero reward is achieved by solving the underlying UNIQUE-
3-SAT instance, proving our reduction. We give a formal argument in Section [2.2] where we show how
to build a randomized algorithm for UNIQUE-3-SAT using a randomized algorithm for LINEAR-3-RL.
In Section [2.3] we discuss the two different settings of parameters which will prove Proposition [2.1] and

Proposition

[+ dist(w, w*))r

2.1 From 3-CNF formulas to 3-action MDPs

We will start by defining a mapping from an input of UNIQUE-3-SAT problem: 3-CNF formula ¢ with
v variables and O(v) clauses to a MDP M, with 3 actions and H = O(d) horizon with optimal value
functions linear in d dimensions. Our informal goal is to design an MDP M, such that finding a good policy
also implies finding the satisfying assignment for the formula ¢. We now formally describe the MDP M,
when the formula ¢ has a unique satisfying assignment w* € {—1,1}" and later show how the MDP M.,
differs when the formula ¢ has no solution. See Figure [1|for an example.

6

(17 17 _1, 1)
=3

r1 Va3V xy
(1, 1, -1, —1)
=2

1 Vxe Vs
(17 —1,—1, 71) T2

=1
=0 O
1
xr1VaeVxs Z2 T3 1 VIV T3
(-1,-1,-1,-1) O O (1,-1,1,-1)
=0 =2
xs3 x1Vx2 VI3
O (-1,-1,1,-1)
=1

Figure 1: Example construction of 3-action MDP M, from a 3-CNF formula (1 V 22 V 23) A (Z1 V 22 V
1‘3) A (.f'l VsV .%'4) VAN (1’1 V o \/i‘g) A (.f'l VoV .f'g) A (i’g V I3 \/i‘g) A (.%1 Va1V .%'1). The only satisfying
assignment for this formula is (1,1, —1,1). The states are labelled by the corresponding assignment and
unsatisfied clause which decides the available actions. The states in the optimal path are colored in red.

Transitions. In our setting, it will be useful to visualize an MDP as a tree, where nodes represent states and
edges represent actions. A policy is then a sequence of actions or equivalently a path in the aforementioned
tree. The MDP M, is a ternary tree i.e. each state/node in the tree has 3 children. The transitions/dynamics
are deterministic i.e. the first action goes to first child, the second action goes to second child and so on.

Assignments. Each state is associated with an assignment to the v variables i.e. a binary vectorin {—1,1}"
and a natural number [denoting the depth of the state. Our goal here is to choose assignments such that it
is always possible to choose an action which decreases the hamming distance to the satisfying assignment.
The root in the tree is associated with the all zeroes assignment (—1, —1,...,—1). For any state s with
a non-satisfying assignment w = (w1, wa, ..., w,) # w*, the assignment associated to the three children
are as follows. Since w is not a satisfying assignment, consider the first unsatisfied clause with variables
Ty, Tiy, Liy. The first child is associated with the assignment where the ¢;-th bit of w is flipped, the second
child is associated with vector where ¢5-th bit is flipped and so on. More formally, the assignment associated
to j-th child is (w}, w5, ..., w;) where w) = —wy, if k = 4; and wj, = wy, otherwise. The two exceptions
to this are (i) states with the satisfying assignment w* and (ii) states at the last level H. For such states, all
actions go to the end state L.

Rewards. To ensure that finding good policies implies finding the satisfying assignment in our MDP, we
will only give rewards when a satisfying assignment is found or at the last layer. More formally, the rewards
everywhere are zero except on (i) states with the satisfying assignment w* and (ii) states on the last level H.
In both the cases above, say the state is at level [with assignment w, then the associated reward distribution
for any action is a Bernoulli distribution Ber(g(l,w)) where

H+wv

g(l,w) = <1 _ l+dist(w,w*))r

and the Bernoulli distribution Ber(p) is 1 with probability p and 0 with probability 1 — p. Here r is
a parameter which we will specify in Section 2.3] When the formula ¢ has no satisfying assignment,

all rewards are 0. Note that in our simulation (Section [2.2), we don’t know/use w* and instead use an
approximate reward function that is easy to compute.

Linear Optimal Value Functions. We next show that in the MDP M,,, the optimal value functions V'*
and Q* can be written as a linear function of d = O(v") dimensional features 1), where 1(s) or (s, a)
depends only on w, the corresponding assignment, and [, the depth of the state.

Proposition 2.3. For any state s in level | with assignment w and action a,
(i) the optimal value function is V*(s) = g(l, w).

(ii) for large enough v, there exists features 1)(s), (s, a) € R? with feature dimension d < 2v" depend-
ing only on state s and action a; and € R? depending only on w* such that V* and Q* can be

written as a linear function of features 1 i.e. V*(s) = (0,1(s)) and Q*(s,a) = (0,v(s,a)).

Proof. To prove our first claim, we start by showing that there exists a policy 7 that achieves this value
for each state. Let m be the policy which for any state s with assignment w # w* chooses the action
which decreases the hamming distance dist(w,w*) by 1. Note that one such action always exists in our
construction, since a satisfying assignment satisfies all clauses. Therefore, from a state s at level [with
assignment w, we can reach a state with assignment w; such that either (i) w; is a satisfying assignment or
(ii) w1 is at the last level and on the optimal path from w to w* i.e. dist(w, w*) = dist(w, wq)+dist(wy, w*).
In both cases,

[4 dist(w, wy) + dist(wq, w*)
B H+wv

V7(s) = (1 > =g(l,w)

Next, for any other policy 7’ that ends on state s” at level I’ with assignment w’ (i.e. either I’ = H or
w’ = w*), we have

/ <1 ' + dist(w/, w*))r - <1 [+ dist(w, w') + dist(w’, w*

VTi(s) = H+o H+o)> < g(w)

where the first inequality follows from !’ — [> dist(w,w’). This proves our first claim about V* i.e.
V*(s) = (1, w).

To prove our second claim, that V* and Q* can be written as a linear function of features ¢, we will
show that V*(s) can be written as a polynomial of degree at most r in w*. To see why this is enough, we
set 0 to be all monomials in w* of degree at most r. That is, each coordinate of § corresponds to a multiset
S C [v] of size |S| < r, and its value is 65 = [[, g w;. We set ¥(s) to be the corresponding coefficients in
the polynomial V*. Then, we can write V*(s) = (0,v(s)). Since, there are at most y__, v* < 20" many
coefficients we can set the feature dimension as d = 2v".

Finally, we prove that V*(s) can be written as a polynomial of degree at most r in w and w*. Firstly
hamming distance dist(w, w*) is linear in both w and w* i.e.

v — (w,w*)

dist(w, w*) = 5

Our claim follows from noting that ¢g(I,w) is a polynomial of degree r in dist(w,w*). Note that linear
V* implies linear Q* in deterministic MDPs for (s, a) = ¢(P(s, a)), since by definition, in MDPs with
deterministic transition, Q*(s,a) = V*(P(s,a)). O

Even though 1/(s) does not depend on w*, unlike the constructions of 22?2, v(s) does depend on the
MDP M, making this construction statistically easy but computationally hard to solve.

2.2 From RL algorithms to 3-SAT algorithms

We now build a randomized algorithm A g 47 for UNIQUE-3-SAT using a randomized algorithm Ap;, for the
RL problem. However, as mentioned before, since the runtime for A gy, accrues only constant runtime for
each call to the MDP oracle, to efficiently build .Ag 47 using Agry,, we need to be able to efficiently simulate
the calls to MDP oracle, namely: calls to the reward function, the transition function and the features. To
do so, we build an “approximate” simulator J_@, for the MDP oracle M. The simulator Mso is exactly
MDP M,, in terms of transition function and features associated with the MDP M, but differs in the reward
function at the last layer which is always 0 for the simulator Mw- This modification is crucial for an efficient
reduction because unlike transitions and features for any state which can be computed in time poly(d) on
the MDP M, the rewards at the last layer when dist(w, w*) # 0 require access to w* which can not be
done efficiently. With the purposed modification, we can execute each call to simulator M@ in time poly(d).

Algorithm. On input 3-CNF formula ¢, Ag 47 runs the algorithm A g, replacing each call to MDP oracle
M, with the corresponding call to simulator]\7[%. Recall that the output for the RL algorithm in our setting
is a sequence of actions. If the sequence of actions returned by Ag, ends on a state with assignment w,
Asar outputs YES if w is the satisfying assignment and returns NO otherwise.

Correctness. We set the horizon H = v". We will assume throughout that » > 2 and that the runtime
of Agy, is < v™'/4. Different settings of r satisfying these assumptions will prove Proposition and
Proposition [2.2] for 3-action MDPs, which we will discuss in Section 2.3] To complete our reduction, we
will show the following:

(i) If algorithm Ap;, outputs a policy 7 such that V™ > V* — 1/4, then Agar on 3-CNF formula ¢
outputs YES if ¢ is satisfiable and NO otherwise.

(i) If Agr with access to MDP oracle M, outputs a policy 7 such that V™ > V* —1 /4 with error
probability 1/10, then Ag;, with access to simulator M, outputs a policy 7 such that V™ > V* —1/4
with error probability 1/8.

These together will show that Agarp so_lves UNIQUE-3-SAT with error probability < 1/8. We start by
proving that if Apr;, succeeds on MDP M., then Ag a7 succeeds on 3-CNF formula . This follows from
the fact that any good policy in the MDP M, must reach a state with satisfying assignment w*.

Proposition 2.4. Suppose r > 1 and horizon H = v". If Ary, outputs a policy 7 such that V™ > V* —1/4,
then Agar on 3-CNF formula ¢ outputs YES if ¢ is satisfiable and NO otherwise.

Proof. Since algorithm Ag 47 always returns NO on an unsatisfiable formula, we restrict our attention to
a satisfiable formula ¢. In the MDP M, (i) rewards are “very small” everywhere except on reaching the
satisfying assignment i.e. the expected reward at the last layer in the MDP M, is upper bounded by (for

large enough v and r > 1)
H \" v\ >
1— = <o T <1/4
< H+v> <H+U> =Y <1/

and (ii) the optimal value V* is large

v\ v\~ ro _ 1

- < H + v> * Ol - T T2
where the second last inequality follows from Bernoulli’s inequality and the last inequality holds for large
enough v and r > 1. Therefore, if the value of policy is large i.e. V™ > V* — 1/4, then the policy 7 (and

therefore the corresponding sequence of actions) has to end on a state with the satisfying assignment w™.
By construction of Ag a7, this implies Ag a7 will succeed on the formula ¢. O

Since we can not simulate the rewards on MDP oracle M, efficiently, our reduction runs the algorithm
ARz, on an approximate simulator M@. However, it’s not clear why Az, would still succeed when each call
to MDP oracle is replaced by a call to the simulator M, - The following proposition shows that in fact Ag;,
would succeed on the outputs of simulator M@ albeit with a smaller constant probability.

Proposition 2.5. Suppose r > 2 and horizon H = v". Suppose Agy, with access to MDP oracle M, runs
in time v""/* and outputs a policy such that V™ > V* — 1 /4 with error probability 1/10. Then Agy, with
access to simulator Mw’ still running in time oA, outputs a policy T such that V™ > V* — 1/4 with error
probability 1/8.

Proof. Let Pryy, and Pr N, denote the distribution on the observed rewards and output policies induced
by the algorithm Ag; when running on access to MDP oracle M, and simulator M, respectively. Let
R; denote the reward received on the last layer at the end of ¢-th trajectory. Let T" be the total number of
trajectories sampled by algorithm Az;, when running on access to MDP oracle M,,. By our assumption,
Apgy, runs in time v"*/4 and therefore T < v"?/4. Since the expected reward at the last layer in the MDP
M, is upper bounded by (for large enough v and r > 2)

1 H " v T< —7‘2+7’< _7”7
— = v v
H+v H+wv - -

r2/4

M)

and and the algorithm only visits at most v states on last layer, we get by the union bound that with high
probability all the rewards at the last level are zero. More precisely (and assuming v is large enough),
4

2
PriR,=0Vic[T]|>1—v " /4> _
Mi[ie[T)]>1-vw 25

We say Apy, succeeds with access to M, (or M@) if the output policy 7 after running for time at most oA
satisfies V™ > V* — 1/4. Using the above reasoning and the assumption that Ap;, succeeds with access to
MDP oracle M, with probability 9/10 implies

Y=
\]

9 _
]\l;r [ARL succeeds with access to M, | R; = 0Vi € [T]] > 12 =—
©

(SIS
oo

Note that the marginal distributions Pr);, and Pr A1, On output policy 7 given R; = 0 Vi € [T] are exactly
the same because MDP oracle MSD and simulator M, only differ on last layer rewards. This implies

Pr [AgL, succeeds with access to M, | R; = 0Vi € [T]]

73

= J\l}r [ARr succeeds with access to M, | R; = 0Vi € [T1]
©

Since, Pry; [R; = 0Vi € [T]] = 1, we conclude that

(O RIEN|

Pr [Agy succeeds with access to M| >
1)

10

2.3 Setting of Parameters

It follows from Propositions [2.3|to [2.5| that if LINEAR-3-RL with feature dimension d = 2v" can be solved
in time v"/4 with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time d /A
with error probability 1/8 (here the extra d factor is because each call to the simulator]\wa takes d time). In
this section, we discuss the two different settings of we use to prove our lower bounds. As we increase
r, we decrease the expected reward available to the algorithm at the last layer on the order of v=O0?),
making the problem harder. However, increasing r also increases the feature dimension on the order of v".
This non-polynomial gap in the feature dimension and expected reward at the last layer will give our main
reduction.

In the first setting, we will set to be a constant wrt number of variables v and prove that a polynomial

algorithm for LINEAR-3-RL implies a polynomial algorithm for UNIQUE-3-SAT.
Proof of Proposition[2.1} For any ¢ > 1, we set
r=28q. 2)
Note that ¢ > 1 implies > 2. Therefore, to prove our proposition, we just need to show
d? < o/ 3)

d-o /4 < pSa+160°+1 4)

under this setting of d and r. Here the first equation bounds the time complexity of LINEAR-3-RL in terms
of feature dimension d and the second equation bounds the time complexity of UNIQUE-3-SAT in terms of
the number of variables v. Equation (3) is true as

[

T

’UT = (’L)T)i Z d% = dq
where the first inequality follows from d < v?" for large enough v and the last equality follows from
Equation (2)) above. Equation (@) holds since

d-om Tt = gprtr/d = O(v8q+16q2)

where the first equality follows from d = 2v" and the last equality follows from Equation for large
enough v. O

In Appendix[A] we prove a more general version, Proposition[A.T| which shows that a quasi-polynomial
algorithm for LINEAR-3-RL implies a quasi-polynomial algorithm for UNIQUE-3-SAT.

In the second setting, we set 72 to be almost linear in the number of variables v. This will prove
Proposition [2.2] for 3-action MDPs.

Proof of Proposition[2.2] This follows exactly as proof of Proposition [2.1] We set
r= [Vo } |

log v

We proceed to show that (i) the time complexity of LINEAR-3-RL can be bounded by o/ (i) d - oA,

which is the time complexity of UNIQUE-3-SAT if (i) holds, can be bounded by 20(v/10gv),
With this setting, the time complexity of LINEAR-3-RL simplifies to

logd 2rlogd 412 log v 872 log v 2
d3210g10gd < p32loglogd < q32log(rlogv) < q) 32logv — ¢ 4

11

where the first and second inequality follows from v" < d < v?" and third inequality follows from our
setting of r.
Similarly, the time complexity of UNIQUE-3-SAT simplifies to

2 4v 4v
2 2 2v_
d . UT /4 2,U’V’+L4 < UT < fulogQ v — Qlogv

where the first equality follows from d = 2v", first inequality follows for » > 2 and large enough v and the
second inequality follows from our setting of r above. O

3 Lower Bound for MDPs with 2 actions

In this section, we prove computational lower bound for LINEAR-2-RL. Similar to Section [2| our proof
is based on reduction from UNIQUE-3-SAT. We will modify the MDP M, with three actions into M, by
introducing some intermediate states. See Figure [3]for an example of this modification for a single state.

Intermediate states. Recall that in M, each state is associated with an assignment. Let the i-th clause,
which consists of three variables z;, , z;,, x;,, be the first unsatisfied clause. Then, the three actions available
each correspond to flipping one of the variable in the clause. We will replace them by two actions: while
one action still flips the last variable z;,, the other action leads to an intermediate state s[;, ;,. At the state
S[iy,i5]> tWO actions are available: one flips x;, and the other flips ;.

Depth of state. In the 3 action MDP M, the depth of a state is simply the length of the path that ends at
the state. Here, we define the depth to be the number of non-intermediate states included in the path. That
being said, the intermediate states will have the same depth as their parents.

Rewards. The rewards are the same as those in the 3 action MDP. Namely, rewards are only given at last
layer or when the assignment is w*. In particular, for a state with assignment w and depth [, the reward
distribution is Ber(g(l, w)) where

ot = (1-)

H+v

We now show that, even with this modification, the optimal value functions V* and Q* can still be
written as a linear function of some low dimensional features.

Proposition 3.1. For any state s in level | with assignment w and action a,

(715713717“')
17_17_1a"')

1= (
n_~O 1=2
x1Vxe Vs [.1‘1,.%2} T2 111
(_17_17_17"') O(i’ ’7’“.)

=1 o

3 (_17_171a"')
O =2

Figure 2: Part of a 2-action MDP corresponding to the CNF clause (x; V x2 V x3). The non-intermediate
states are colored red and the intermediate states are colored blue.

(i) If s is a non-intermediate state, then the optimal value function is V*(s) = g(l, w).

(ii) If s is an intermediate state that leads to actions which flip coordinates i1 and i, then the optimal
value function is

V*(S[il,ig]) = (1 -

I+ dist(w, w*) + 2 - Hw;, = wj } - Hw, = wj, }\"
H+v '

(iii) for feature dimension d = 20", there exists features 1)(s), (s, a) € R? depending only on state s
and action a; and 0 € R? depending only on w* such that V* and Q* can be written as a linear

function of features 1) i.e. V*(s) = (0,1(s)) and Q*(s,a) = (0,1 (s, a)).

Proof. The proof for the value function of non-intermediate state is identical to that in the 3-action MDP.
We proceed to argue the second claim. For an intermediate state, the value function will be identical to its
parent if the two actions available include a wrong bit that ought to be flipped in the optimal assignment
w*. Otherwise, no matter what action the agent takes, it will reach a non-intermediate state whose depth
is [+ 1 and hamming distance is dist(w,w*) + 1. Compared to the value function of its parent, such
intermediate state will have an extra 2 in the numerator. We encode the situation with the indicator term
H{w;, =wj }- 1{w;y, = wj,}. This then gives the value function for these intermediate states.

Lastly, like in the proof of Proposition [2.3] it suffices to argue the value function is a degree 27 poly-
nomial in w and w*. This is by noticing that (i) dist(w,w*) is linear in w and w*; and (ii) 1{w;, =
wy, } - I{w;, = wj, } is quadratic in w and w* i.e.

Hw;, = wy, } - Hwg, = wj,} = % (1= wyy - wy) (1= wy, - wy)) .
Thus, the value function is overall a polynomial of degree 2r in w*. As in Proposition we can set 0 to
be all monomials in w* of degree at most 2r and ¢(s) to be the corresponding coefficients. Since there are
at most 2v%" such monomials, this concludes the proof. O

By Proposition the feature dimension d of the 2 action MDP and the number of variables v in
the UNIQUE-3-SAT instance are related by d = 20" < v3". We are now ready to prove Proposition and

Proposition [I.6]
Proof of Proposition[I.2] Fix ¢ > 1, we set r = 12¢. Under this setting, we have

44 < dr/12 < (U3r>7”/12 _ Ur2/4

)

where the first inequality follows from the setting of r and the second inequality follows from d < v3". The
reduction then allows us to upper bound the complexity of UNIQUE-3-SAT by

d- ,Ur2/4 < vr2/4+3r — UO(qz)

)

where the inequality again follows from d < v3". O

Proof of Proposition[I.6] The proof follows similarly as proof of Proposition The only difference is
that since d is now bounded by v®" instead of v?", we need the runtime of LINEAR-2-RL in the assumption
to also have a different constant in the exponent i.e. 08 @/(72loglogd) O

Acknowledgements

The authors would like to thank Sham Kakade, Akshay Krishnamurthy, Ayush Sekhari, Wen Sun, Csaba
Szepesvari and Gellert Weisz for enlightening discussions and comments on initial draft.

13

A General Reduction from UNIQUE-3-SAT to LINEAR-3-RL

Proposition A.1. Suppose m > 0 and q > 1. If LINEAR-3-RL with feature dimension d can be solved
in time d710ed)™ "2 it error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in
time vO(16™ ¢ F2)-(log)™ \ish error probability 1/8.

Proof. 1t follows from Proposition[2.3] Proposition[2.4]and Proposition[2.3]that for 2 < r < v, if LINEAR-3-
RL with feature dimension d = 20" can be solved in time v""/4 with error probability 1/10, then UNIQUE-
3-SAT with v variables can be solved in time d - v""/4 with error probability 1/8 (as each call to simulator
M@ takes d time). For any m > 0 and ¢ > 1, we set

r = [V(16 log™o | . 5)

Note that m > 0 and ¢ > 1 implies » > 2. Therefore, to prove our claim, we just need to show the following
equations hold for our setting of d and r:

Ur2/4 > dq~log#+2 d ©6)

d .o/ = 0((169)™F2)log™ v %)

Here the first equation bounds the time complexity of LINEAR-3-RL in terms of feature dimension d and
the second equation bounds the time complexity of UNIQUE-3-SAT in terms of the number of variables v.

Proof of Equation (6): To prove the first inequality, we lower bound r in terms of feature dimension d as

r > 8¢ (log d)™ "+ (®)

m—+2

which can be proved by lower bounding r as follows

T2 = 2 e > (16¢) ™ 2 log™ v - 7™
= (169)"™**log™(v") > (16¢)™1og™ (Vd) > (8¢)"*1og™ d
where the first inequality follows from our setting of r and the second inequality follows from d < 20" < v?"

for » > 0 and large enough v. Substituting the lower bound in v™*/4, we can write the time complexity of
LINEAR-3-RL in terms of feature dimension d as

N

T

VT = () 2 d > aren

SR

where the first inequality follows again from d < v?" and the second inequality follows from Equation (8)
above.

Proof of Equation (7): The second equation follows by substituting our setting of r (Equation (2)) in
d-vr/A,

d- Ur2/4 _ 2,Ur+r2/4 _ UO((16q)m+2)logmv

where the first equality follows from d = 2v". O

14

	Introduction
	Our Contributions
	No polynomial time algorithm for Linear-2-RL
	Quasi-Polynomial Lower Bound for Linear-2-RL

	Lower Bound for MDPs with 3 actions
	From 3-CNF formulas to 3-action MDPs
	From RL algorithms to 3-SAT algorithms
	Setting of Parameters

	Lower Bound for MDPs with 2 actions
	General Reduction from Unique-3-Sat to Linear-3-RL

