

Shanda Li

✉ shandal@cs.cmu.edu
↪ lithiumda.github.io
⌚ LithiumDA

Education

Aug 2022 **Machine Learning Department, School of Computer Science, Carnegie Mellon University**,
– present Ph.D. student in Machine Learning. QPA: 4.28/4.33.
Research advisor: Prof. [Yiming Yang](#) & [Ameet Talwalkar](#).

Aug 2018 **Turing Class, School of EECS, Peking University**,
–Jul 2022 B.S. in Computer Science (Summa Cum Laude) with a minor in Mathematics. GPA: 3.78/4.00. .
Bachelor Thesis: Deep-Learning-Based Partial Differential Equation Solvers (*Top 10 Thesis in School of EECS*)

Recent Research Interests

ML for math and science: Mathematical reasoning, code generation, differential equation solving.

Principled scaling of LLMs: Inference scaling laws, context scaling of LLMs, etc.

Learning with synthetic data: Designing data generation algorithms for concerned tasks.

Selected Publications & Manuscripts (* denotes equal contribution)

Inference scaling laws and mathematical reasoning of LLMs

[1] **Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models**, [arXiv](#), Yangzhen Wu, Zhiqing Sun, **Shanda Li**, Sean Welleck, Yiming Yang .

[2] **CMU-MATH Team's Innovative Approach Secures 2nd Place at the AIMO Prize**, [CMU ML Blog](#), Yangzhen Wu, Zhiqing Sun, **Shanda Li**, Sean Welleck, Yiming Yang .

Long context Transformers

[3] **Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding**, [NeurIPS 2021](#), Shengjie Luo*, **Shanda Li***, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang, Tie-Yan Liu .

[4] **Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers**, [AISTATS 2024](#), Krzysztof Choromanski*, **Shanda Li***, Valerii Likhoshesterov, Kumar Avinava Dubey, Shengjie Luo, Di He, Yiming Yang, Tamas Sarlos, Thomas Weingarten, Adrian Weller.

[5] **Functional Interpolation for Relative Positions Improves Long Context Transformers**, [ICLR 2024](#), **Shanda Li**, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, Srinadh Bhojanapalli.

Deep-learning-based partial differential equation solvers

[6] **Is L^2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?**, [NeurIPS 2022](#), Chuwei Wang*, **Shanda Li***, Di He, Liwei Wang.

[7] **Learning Physics-Informed Neural Networks without Stacked Back-propagation**, [AISTATS 2023](#), Di He, **Shanda Li**, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, Tie-Yan Liu .

Selected Awards and Honors

Jul 2024 **Rank 2/1161 in the first progress prize of Artificial Intelligence Mathematical Olympiad.**

Jun 2022	Excellent College Graduate in Beijing, Top 1%,	Beijing Municipal Commission of Education.
Jun 2022	Top 10 Bachelor Thesis,	School of EECS, Peking University.
Nov 2021	SenseTime Scholarship, 30 undergraduates per year in China in the field of AI,	SenseTime.

Work Experiences

May 2024 **Google Research (New York), Student researcher**, Host: [Nikunj Saunshi](#).

- Aug 2024
 - Researched on looped Transformers for mathematical reasoning with language models.
 - Explored techniques for pretraining looped Transformers or finetuning existing standard models into looped ones.

Jun 2023 **Google Research (New York), Student researcher**, Host: [Srinadh Bhojanapalli](#).

- Aug 2023
 - Researched on length generalization and long context Transformers.
 - Proposed a new method which matches the long-context performances of baselines with $0.36\times$ parameters.
 - Published the work in ICLR 2024 as the first author.

Mar 2021 **Microsoft Research Asia, Research intern**, Host: [Guolin Ke](#).

- Jun 2021
 - Researched on accelerating attention with relative positional encodings (RPE) for long sequences.
 - Designed efficient RPE-based attention with $O(n \log n)$ complexity in sequence lengths via Fast Fourier Transform.
 - Published the work in NeurIPS 2021 as a co-first author.

Invited Talks

Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding.

- Mini Research Symposium of CFCS and Turing Class, Peking University Dec 2021

Your Transformer May Not be as Powerful as You Expect.

- International Joint Conference on Theoretical Computer Science Aug 2022

Is L^2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?.

- Turing Student Research Forum, Peking University Jun 2022
- Machine Learning+X Seminar, Brown University Oct 2022

Inference Scaling Law of Large Language Models and Second-Prize Winning Solution of AIMO.

- International Seminar on Foundational Artificial Intelligence (FAI-Seminar) Aug 2024
- NLP reading group, MiniMax Aug 2024

Professional Service

Reviewer.

- Conference: ICML 2022-2024; NeurIPS 2022-2024; LoG 2023-2024; ICLR 2024-2025; AISTATS 2024-2025.
- Workshop: M3L@NeurIPS 2023, 2024; BGPT@ICLR 2024; MATH-AI@NeurIPS 2024

Teaching Assistant.

- Probability and Statistics (A), Peking University Spring 2022
- Advanced Introduction to Machine Learning (10-715), Carnegie Mellon University Fall 2024
- Advanced Introduction to Machine Learning (11-741), Carnegie Mellon University Spring 2025

Skills

Programming: Python (Pytorch, Jax), C/C++, \LaTeX .

Languages: Chinese, native speaker; English, proficient (TOEFL 108/120, Speaking 26/30).