Papers by Kirsten Jørgensen

International Journal of Biological Macromolecules, 2005
Potato tuber starch was genetically engineered in the plant by the simultaneous antisense suppres... more Potato tuber starch was genetically engineered in the plant by the simultaneous antisense suppression of the starch branching enzyme (SBE) I and II isoforms. Starch prepared from 12 independent lines and three control lines were characterised with respect to structural and physical properties. The lengths of the amylopectin unit chains, the concentrations of amylose and monoesterified phosphate were significantly increased in the transgenically engineered starches. Size exclusion chromatography with refractive index detection (SEC-RI) indicated a minor decrease in apparent molecular size of the amylose and the less branched amylopectin fractions. Differential scanning calorimetry (DSC) revealed significantly higher peak temperatures for gelatinisation and retrogradation of the genetically engineered starches whereas the enthalpies of gelatinisation were lower. Aqueous gels prepared from the transgenic starches showed increased gel elasticity and viscosity. Principle component analysis (PCA) of the data set discriminated the control lines from the transgenic lines and revealed a high correlation between phosphate concentration and amylopectin unit chain length. The PCA also indicated that the rheological characteristics were primarily influenced by the amylose concentration. The phosphate and the amylopectin unit chain lengths had influenced primarily the pasting and rheological properties of the starch gels.

BMC genomics, 2014
Background: Small-secreted peptides are emerging as important components in cell-cell communicati... more Background: Small-secreted peptides are emerging as important components in cell-cell communication during basic developmental stages of plant cell growth and development. Plant peptide containing sulfated tyrosine 1 (PSY1) has been reported to promote cell expansion and differentiation in the elongation zone of roots. PSY1 action is dependent on a receptor PSY1R that triggers a signaling cascade leading to cell elongation. However little is known about cellular functions and the components involved in PSY1-based signaling cascade. Results: Differentially expressed genes were identified in a wild type plant line and in a psy1r receptor mutant line of Arabidopsis thaliana after treatment with PSY1. Seventy-seven genes were found to be responsive to the PSY1 peptide in wild type plants while 154 genes were responsive in the receptor mutant plants. PSY1 activates the transcripts of genes involved in cell wall modification. Gene enrichment analysis revealed that PSY1-responsive genes are involved in responses to stimuli, metabolic processes and biosynthetic processes. The significant enrichment terms of PSY1-responsive genes were higher in psy1r mutant plants compared to in wild type plants. Two parallel responses to PSY1 were identified, differing in their dependency on the PSY1R receptor. Promoter analysis of the differentially expressed genes identified a light regulatory motif in some of these.

The Biochemical journal, 2015
Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue ... more Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results commo...

Plant Hormone Signal Perception and Transduction, 1996
For the first time, a cytosolic carotenoid cleavage enzyme isolated from quince (Cydonia oblonga)... more For the first time, a cytosolic carotenoid cleavage enzyme isolated from quince (Cydonia oblonga) fruit is described. The enzyme was partially purified by using centrifugation, acetone precipitation, ultrafiltration (300 kD, 50 kD), isoelectric focusing (pH 3-10), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (7.5%). In this way, an enzymatically active protein fraction was obtained that contained three similar proteins, all exhibiting molecular weights in the range of 20 kD. Using beta-carotene as substrate, the enzyme activity was detected spectrophotometrically at a wavelength of 505 nm. The time constant of the reaction was 8.2 min, the Michaelis constant (K(m)) was 11.0 micromol x L(-1), and the maximum velocity (v(max)) was 0.083 micromol x L(-1) x min(-1) x mg(protein)(-1). The optimum temperature was above 50 degrees C.

Plant physiology, 2011
Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-... more Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-m...
Uploads
Papers by Kirsten Jørgensen