Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals.... more Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-basedgenotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequ...
Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the a... more Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wetindicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22°C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.
Although the recent history of human colonisation and impact on Mauritius is well documented, vir... more Although the recent history of human colonisation and impact on Mauritius is well documented, virtually no records of the pre-human native ecosystem exist, making it difficult to assess the magnitude of the changes brought about by human settlement. Here, we describe a 4000-year-old fossil bed at Mare aux Songes (MAS) in south-eastern Mauritius that contains both macrofossils (vertebrate fauna, gastropods, insects and flora) and microfossils (diatoms, pollen, spores and phytoliths). With >250 bone fragments/m 2 and comprising 50% of all known extinct and extant vertebrate species (n s ¼ 44) of Mauritius, MAS may constitute the first Holocene vertebrate bone Concentration-Lagerstä tte identified on an oceanic volcanic island. Fossil remains are dominated by extinct giant tortoises Cylindraspis spp. (63%), passerines (w10%), small bats (7.8%) and dodo Raphus cucullatus (7.1%). Twelve radiocarbon ages [four of them duplicates] from bones and other material suggest that accumulation of fossils took place within several centuries. An exceptional combination of abiotic conditions led to preservation of bones, bone collagen, plant tissue and microfossils. Although bone collagen is well preserved, DNA from dodo and other Mauritian vertebrates has proved difficult. Our analysis suggests that from ca 4000 years ago (4 ka), rising sea levels created a freshwater lake at MAS, generating an oasis in an otherwise dry environment which attracted a diverse vertebrate fauna. Subsequent aridification in the south-west Indian Ocean region may have increased carcass accumulation during droughts, contributing to the exceptionally high fossil concentration. The abundance of floral and faunal remains in this Lagerstä tte offers a unique opportunity to reconstruct a pre-human ecosystem on an oceanic island, providing a key foundation for assessing the vulnerability of island ecosystems to human impact.
Proceedings of The National Academy of Sciences, 2009
The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbiv... more The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbivores that dominated the New Zealand (NZ) ecosystem until their extinction Ϸ600 years ago. The phylogeny and evolutionary history of this morphologically diverse order has remained controversial since their initial description in 1839. We synthesize mitochondrial phylogenetic information from 263 subfossil moa specimens from across NZ with morphological, ecological, and new geological data to create the first comprehensive phylogeny, taxonomy, and evolutionary timeframe for all of the species of an extinct order. We also present an important new geological/paleogeographical model of late Cenozoic NZ, which suggests that terrestrial biota on the North and South Island landmasses were isolated for most of the past 20 -30 Ma. The data reveal that the patterns of genetic diversity within and between different moa clades reflect a complex history following a major marine transgression in the Oligocene, affected by marine barriers, tectonic activity, and glacial cycles. Surprisingly, the remarkable morphological radiation of moa appears to have occurred much more recently than previous early Miocene (ca. 15 Ma) estimates, and was coincident with the accelerated uplift of the Southern Alps just ca. 5-8.5 Ma. Together with recent fossil evidence, these data suggest that the recent evolutionary history of nearly all of the iconic NZ terrestrial biota occurred principally on just the South Island.
Chukotka is a key region for understanding both Quaternary environmental history and transcontine... more Chukotka is a key region for understanding both Quaternary environmental history and transcontinental migrations of flora and fauna during the Pleistocene as it lies at the far eastern edge of Asia bordering the Bering Sea. The now submerged land bridge is the least understood region of Beringia yet the most critical to understanding migrations between the Old and New Worlds. The insect fauna of the Main River Ledovy Obryv (Ice Bluff) section, which is late Pleistocene in age (MIS 3-2), is markedly different from coeval faunas of areas further to the west, as it is characterized by very few thermophilous steppe elements. From the fauna we reconstruct a steppe-tundra environment and relatively cold conditions; the reconstructed environment was moister than that of typical steppe-tundra described from further west. The data from this locality, if typical of the Chukotka Peninsula as a whole, may indicate that a barrier associated with the environments of the land bridge restricted trans-Beringian migrations, particularly the more thermophilous and xeric-adapted elements of the Beringian biota, supporting the hypothesis of a cool but moist land-bridge filter inferred from evidence from several other studies.
Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling p... more Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -an alternative approach that also does not involve destruction of valuable material.
Using ancient DNA (aDNA) extracted from eggshell of the extinct moa (Aves: Dinornithiformes) we d... more Using ancient DNA (aDNA) extracted from eggshell of the extinct moa (Aves: Dinornithiformes) we determined the species composition and number of eggs found in a late thirteenth century earth oven feature at Wairau Bar (South Island, New Zealand) e one of New Zealand's most significant archaeological sites. Mitochondrial and nuclear DNA signatures confirmed this oven feature contained fragments of at least 31 moa eggs, representing three moa genera: Emeus; Euryapteryx; Dinornis. We demonstrate through the genetic identification of 127 moa eggshell fragments that thickness is an unreliable character for species assignment. We also present a protocol for assessing the preservation likelihood of DNA in burnt eggshell. This is useful because eggshell fragments found in archaeological contexts have often been thermally modified, and heat significantly increases DNA fragmentation. Eggshell is widely used in radiocarbon dating and stable isotope research, this study showcases how aDNA can also add to our knowledge of eggshell in both archaeological and palaeoecological contexts.
Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling p... more Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -an alternative approach that also does not involve destruction of valuable material.
Time-scales estimated from sequence data play an important role in molecular ecology. They can be... more Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of timescales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.
Psittaciformes (parrots and cockatoos) are charismatic birds, their plumage and capacity for lear... more Psittaciformes (parrots and cockatoos) are charismatic birds, their plumage and capacity for learning make them highly sought after pets. The illegal trade in parrots and cockatoos poses a serious threat to the viability of native populations; in addition, species transported to non-endemic areas may potentially vector disease and genetically ‘pollute’ local native avifauna. To reduce the logistical difficulties associated with trafficking live birds, smugglers often transport eggs. This creates a problem for authorities in elucidating accurate species identification without the laborious task of incubation and hand rearing until a morphological identification can be made. Here, we use 99 avian eggs seized from carriers coming into and within Australia, as a result of suspected illegal trade. We investigate and evaluate the use of mitochondrial DNA (mtDNA) to accurately identify eggs to family, genus or species level. However, Identification of a species based on percentage mtDNA similarities is difficult without good representations of the inter- and intra-levels of species variation. Based on the available reference database, we were able to identify 52% of the eggs to species level. Of those, 10 species from eight genera were detected, all of which belong to the parrot (Psittacidae) and cockatoo (Cacatuidae) families. Of the remaining 48%, a further 36% of eggs were identified to genus level, and 12% identified to family level using our assignment criteria. Clearly the lack of validated DNA reference sequences is hindering our ability to accurately assign a species identity, and accordingly, we advocate that more attention needs to be paid to establishing validated, multi locus mtDNA reference databases for exotic birds that can both assist in genetic identifications and withstand legal scrutiny.
Time-scales estimated from sequence data play an important role in molecular ecology. They can be... more Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of timescales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.
The recent increase in both the abundance and taxonomic range of DNA sequence data in public repo... more The recent increase in both the abundance and taxonomic range of DNA sequence data in public repositories makes it possible to determine the maternal origin of lineages of faunal archaeological material by characterizing its mitochondrial DNA. Among the most commonly represented taxa are domesticated animals, for which extensive genetic characterization has revealed high levels of genetic diversity and (in at least some cases) strong phylogeographic clustering. Such information has significant implications not only for characterizing important aspects of the occupation history of archaeological sites, but also in providing novel insights into colonisation history and the scale and scope of trade and exchange networks. This can be done through studying the origins and dispersal of proxy organisms such as commensal and domesticated animals, as well as economically important wild fauna. To illustrate this approach, we compare historical records of maritime movement of people and pigs from two sites on Lord Howe Island, Australia, to phylogeographic results of DNA extracted from pig bones.
Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the... more Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when plant reference databases become better established.
In recent years, several studies have reported the successful extraction of ancient DNA (aDNA) fr... more In recent years, several studies have reported the successful extraction of ancient DNA (aDNA) from both frozen and nonfrozen sediments (even in the absence of macrofossils) in order to obtain genetic ''profiles'' from past environments. One of the hazards associated with this approach, particularly in nonfrozen environments, is the potential for vertical migration of aDNA across strata. To assess the extent of this problem, we extracted aDNA from sediments up to 3300 years old at 2 cave sites in the North Island of New Zealand. These sites are ideal for this purpose as the presence or absence of DNA from nonindigenous fauna (such as sheep) in sediments deposited prior to European settlement can serve as an indicator of DNA movement. Additionally, these strata are well defined and dated. DNA from sheep was found in strata that also contained moa DNA, indicating that genetic material had migrated downwards. Quantitative polymerase chain reaction analyses demonstrated that the amount of sheep DNA decreased as the age of sediments increased. Our results suggest that sedimentary aDNA is unlikely to be deposited from wind-borne DNA and that physical remains of organisms or their ejecta need to have been incorporated in the sediments for their DNA to be detected. Our study indicates that DNA from sediments can still offer a rich source of information on past environments, provided that the risk from vertical migration can be controlled for.
Proceedings of The National Academy of Sciences, 2009
Causes of late Quaternary extinctions of large mammals (''megafauna'') continue to be debated, es... more Causes of late Quaternary extinctions of large mammals (''megafauna'') continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000 -13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or confined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene. extinction ͉ permafrost ͉ megafauna ͉ Beringia
Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records... more Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records. This approach is time-consuming and suffers from low taxonomic resolution and biased taxon sampling. Here, we test an alternative DNA-based approach utilizing the P6 loop in the chloroplast trnL (UAA) intron; a short (13–158 bp) and variable region with highly conserved flanking sequences. For taxonomic reference, a whole trnL intron sequence database was constructed from recently collected material of 842 species, representing all widespread and/or ecologically important taxa of the species-poor arctic flora. The P6 loop alone allowed identification of all families, most genera (>75%) and one-third of the species, thus providing much higher taxonomic resolution than pollen records. The suitability of the P6 loop for analysis of samples containing degraded ancient DNA from a mixture of species is demonstrated by high-throughput parallel pyrosequencing of permafrost-preserved DNA and reconstruction of two plant communities from the last glacial period. Our approach opens new possibilities for DNA-based assessment of ancient as well as modern biodiversity of many groups of organisms using environmental samples.
Proceedings of The Royal Society B: Biological Sciences, 2010
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in... more Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequ... more To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine / guanine and thymine / cytosine) and type 2 transitions (cytosine / thymine and guanine / adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences.
The genetic analysis of faecal material represents a relatively non-invasive way to study animal ... more The genetic analysis of faecal material represents a relatively non-invasive way to study animal diet and has been widely adopted in ecological research. Due to the heterogeneous nature of faecal material the primary obstacle, common to all genetic approaches, is a means to dissect the constituent DNA sequences. Traditionally, bacterial cloning of PCR amplified products was employed; less common has been the use of species-specific quantitative PCR (qPCR) assays. Currently, with the advent of High-Throughput Sequencing (HTS) technologies and indexed primers it has become possible to conduct genetic audits of faecal material to a much greater depth than previously possible. To date, no studies have systematically compared the estimates obtained by HTS with that of qPCR. What are the relative strengths and weaknesses of each technique and how quantitative are deep-sequencing approaches that employ universal primers? Using the locally threatened Little Penguin (Eudyptula minor) as a model organism, it is shown here that both qPCR and HTS techniques are highly correlated and produce strikingly similar quantitative estimates of fish DNA in faecal material, with no statistical difference. By designing four species-specific fish qPCR assays and comparing the data to the same four fish in the HTS data it was possible to directly compare the strengths and weaknesses of both techniques. To obtain reproducible quantitative data one of the key, and often overlooked, steps common to both approaches is ensuring that efficient DNA isolation methods are employed and that extracts are free of inhibitors. Taken together, the methodology chosen for long-term faecal monitoring programs is largely dependent on the complexity of the prey species present and the level of accuracy that is desired. Importantly, these methods should not be thought of as mutually exclusive, as the use of both HTS and qPCR in tandem will generate datasets with the highest fidelity.
Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals.... more Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-basedgenotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequ...
Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the a... more Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wetindicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22°C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.
Although the recent history of human colonisation and impact on Mauritius is well documented, vir... more Although the recent history of human colonisation and impact on Mauritius is well documented, virtually no records of the pre-human native ecosystem exist, making it difficult to assess the magnitude of the changes brought about by human settlement. Here, we describe a 4000-year-old fossil bed at Mare aux Songes (MAS) in south-eastern Mauritius that contains both macrofossils (vertebrate fauna, gastropods, insects and flora) and microfossils (diatoms, pollen, spores and phytoliths). With >250 bone fragments/m 2 and comprising 50% of all known extinct and extant vertebrate species (n s ¼ 44) of Mauritius, MAS may constitute the first Holocene vertebrate bone Concentration-Lagerstä tte identified on an oceanic volcanic island. Fossil remains are dominated by extinct giant tortoises Cylindraspis spp. (63%), passerines (w10%), small bats (7.8%) and dodo Raphus cucullatus (7.1%). Twelve radiocarbon ages [four of them duplicates] from bones and other material suggest that accumulation of fossils took place within several centuries. An exceptional combination of abiotic conditions led to preservation of bones, bone collagen, plant tissue and microfossils. Although bone collagen is well preserved, DNA from dodo and other Mauritian vertebrates has proved difficult. Our analysis suggests that from ca 4000 years ago (4 ka), rising sea levels created a freshwater lake at MAS, generating an oasis in an otherwise dry environment which attracted a diverse vertebrate fauna. Subsequent aridification in the south-west Indian Ocean region may have increased carcass accumulation during droughts, contributing to the exceptionally high fossil concentration. The abundance of floral and faunal remains in this Lagerstä tte offers a unique opportunity to reconstruct a pre-human ecosystem on an oceanic island, providing a key foundation for assessing the vulnerability of island ecosystems to human impact.
Proceedings of The National Academy of Sciences, 2009
The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbiv... more The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbivores that dominated the New Zealand (NZ) ecosystem until their extinction Ϸ600 years ago. The phylogeny and evolutionary history of this morphologically diverse order has remained controversial since their initial description in 1839. We synthesize mitochondrial phylogenetic information from 263 subfossil moa specimens from across NZ with morphological, ecological, and new geological data to create the first comprehensive phylogeny, taxonomy, and evolutionary timeframe for all of the species of an extinct order. We also present an important new geological/paleogeographical model of late Cenozoic NZ, which suggests that terrestrial biota on the North and South Island landmasses were isolated for most of the past 20 -30 Ma. The data reveal that the patterns of genetic diversity within and between different moa clades reflect a complex history following a major marine transgression in the Oligocene, affected by marine barriers, tectonic activity, and glacial cycles. Surprisingly, the remarkable morphological radiation of moa appears to have occurred much more recently than previous early Miocene (ca. 15 Ma) estimates, and was coincident with the accelerated uplift of the Southern Alps just ca. 5-8.5 Ma. Together with recent fossil evidence, these data suggest that the recent evolutionary history of nearly all of the iconic NZ terrestrial biota occurred principally on just the South Island.
Chukotka is a key region for understanding both Quaternary environmental history and transcontine... more Chukotka is a key region for understanding both Quaternary environmental history and transcontinental migrations of flora and fauna during the Pleistocene as it lies at the far eastern edge of Asia bordering the Bering Sea. The now submerged land bridge is the least understood region of Beringia yet the most critical to understanding migrations between the Old and New Worlds. The insect fauna of the Main River Ledovy Obryv (Ice Bluff) section, which is late Pleistocene in age (MIS 3-2), is markedly different from coeval faunas of areas further to the west, as it is characterized by very few thermophilous steppe elements. From the fauna we reconstruct a steppe-tundra environment and relatively cold conditions; the reconstructed environment was moister than that of typical steppe-tundra described from further west. The data from this locality, if typical of the Chukotka Peninsula as a whole, may indicate that a barrier associated with the environments of the land bridge restricted trans-Beringian migrations, particularly the more thermophilous and xeric-adapted elements of the Beringian biota, supporting the hypothesis of a cool but moist land-bridge filter inferred from evidence from several other studies.
Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling p... more Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -an alternative approach that also does not involve destruction of valuable material.
Using ancient DNA (aDNA) extracted from eggshell of the extinct moa (Aves: Dinornithiformes) we d... more Using ancient DNA (aDNA) extracted from eggshell of the extinct moa (Aves: Dinornithiformes) we determined the species composition and number of eggs found in a late thirteenth century earth oven feature at Wairau Bar (South Island, New Zealand) e one of New Zealand's most significant archaeological sites. Mitochondrial and nuclear DNA signatures confirmed this oven feature contained fragments of at least 31 moa eggs, representing three moa genera: Emeus; Euryapteryx; Dinornis. We demonstrate through the genetic identification of 127 moa eggshell fragments that thickness is an unreliable character for species assignment. We also present a protocol for assessing the preservation likelihood of DNA in burnt eggshell. This is useful because eggshell fragments found in archaeological contexts have often been thermally modified, and heat significantly increases DNA fragmentation. Eggshell is widely used in radiocarbon dating and stable isotope research, this study showcases how aDNA can also add to our knowledge of eggshell in both archaeological and palaeoecological contexts.
Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling p... more Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -an alternative approach that also does not involve destruction of valuable material.
Time-scales estimated from sequence data play an important role in molecular ecology. They can be... more Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of timescales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.
Psittaciformes (parrots and cockatoos) are charismatic birds, their plumage and capacity for lear... more Psittaciformes (parrots and cockatoos) are charismatic birds, their plumage and capacity for learning make them highly sought after pets. The illegal trade in parrots and cockatoos poses a serious threat to the viability of native populations; in addition, species transported to non-endemic areas may potentially vector disease and genetically ‘pollute’ local native avifauna. To reduce the logistical difficulties associated with trafficking live birds, smugglers often transport eggs. This creates a problem for authorities in elucidating accurate species identification without the laborious task of incubation and hand rearing until a morphological identification can be made. Here, we use 99 avian eggs seized from carriers coming into and within Australia, as a result of suspected illegal trade. We investigate and evaluate the use of mitochondrial DNA (mtDNA) to accurately identify eggs to family, genus or species level. However, Identification of a species based on percentage mtDNA similarities is difficult without good representations of the inter- and intra-levels of species variation. Based on the available reference database, we were able to identify 52% of the eggs to species level. Of those, 10 species from eight genera were detected, all of which belong to the parrot (Psittacidae) and cockatoo (Cacatuidae) families. Of the remaining 48%, a further 36% of eggs were identified to genus level, and 12% identified to family level using our assignment criteria. Clearly the lack of validated DNA reference sequences is hindering our ability to accurately assign a species identity, and accordingly, we advocate that more attention needs to be paid to establishing validated, multi locus mtDNA reference databases for exotic birds that can both assist in genetic identifications and withstand legal scrutiny.
Time-scales estimated from sequence data play an important role in molecular ecology. They can be... more Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of timescales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.
The recent increase in both the abundance and taxonomic range of DNA sequence data in public repo... more The recent increase in both the abundance and taxonomic range of DNA sequence data in public repositories makes it possible to determine the maternal origin of lineages of faunal archaeological material by characterizing its mitochondrial DNA. Among the most commonly represented taxa are domesticated animals, for which extensive genetic characterization has revealed high levels of genetic diversity and (in at least some cases) strong phylogeographic clustering. Such information has significant implications not only for characterizing important aspects of the occupation history of archaeological sites, but also in providing novel insights into colonisation history and the scale and scope of trade and exchange networks. This can be done through studying the origins and dispersal of proxy organisms such as commensal and domesticated animals, as well as economically important wild fauna. To illustrate this approach, we compare historical records of maritime movement of people and pigs from two sites on Lord Howe Island, Australia, to phylogeographic results of DNA extracted from pig bones.
Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the... more Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when plant reference databases become better established.
In recent years, several studies have reported the successful extraction of ancient DNA (aDNA) fr... more In recent years, several studies have reported the successful extraction of ancient DNA (aDNA) from both frozen and nonfrozen sediments (even in the absence of macrofossils) in order to obtain genetic ''profiles'' from past environments. One of the hazards associated with this approach, particularly in nonfrozen environments, is the potential for vertical migration of aDNA across strata. To assess the extent of this problem, we extracted aDNA from sediments up to 3300 years old at 2 cave sites in the North Island of New Zealand. These sites are ideal for this purpose as the presence or absence of DNA from nonindigenous fauna (such as sheep) in sediments deposited prior to European settlement can serve as an indicator of DNA movement. Additionally, these strata are well defined and dated. DNA from sheep was found in strata that also contained moa DNA, indicating that genetic material had migrated downwards. Quantitative polymerase chain reaction analyses demonstrated that the amount of sheep DNA decreased as the age of sediments increased. Our results suggest that sedimentary aDNA is unlikely to be deposited from wind-borne DNA and that physical remains of organisms or their ejecta need to have been incorporated in the sediments for their DNA to be detected. Our study indicates that DNA from sediments can still offer a rich source of information on past environments, provided that the risk from vertical migration can be controlled for.
Proceedings of The National Academy of Sciences, 2009
Causes of late Quaternary extinctions of large mammals (''megafauna'') continue to be debated, es... more Causes of late Quaternary extinctions of large mammals (''megafauna'') continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000 -13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or confined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene. extinction ͉ permafrost ͉ megafauna ͉ Beringia
Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records... more Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records. This approach is time-consuming and suffers from low taxonomic resolution and biased taxon sampling. Here, we test an alternative DNA-based approach utilizing the P6 loop in the chloroplast trnL (UAA) intron; a short (13–158 bp) and variable region with highly conserved flanking sequences. For taxonomic reference, a whole trnL intron sequence database was constructed from recently collected material of 842 species, representing all widespread and/or ecologically important taxa of the species-poor arctic flora. The P6 loop alone allowed identification of all families, most genera (>75%) and one-third of the species, thus providing much higher taxonomic resolution than pollen records. The suitability of the P6 loop for analysis of samples containing degraded ancient DNA from a mixture of species is demonstrated by high-throughput parallel pyrosequencing of permafrost-preserved DNA and reconstruction of two plant communities from the last glacial period. Our approach opens new possibilities for DNA-based assessment of ancient as well as modern biodiversity of many groups of organisms using environmental samples.
Proceedings of The Royal Society B: Biological Sciences, 2010
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in... more Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequ... more To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine / guanine and thymine / cytosine) and type 2 transitions (cytosine / thymine and guanine / adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences.
The genetic analysis of faecal material represents a relatively non-invasive way to study animal ... more The genetic analysis of faecal material represents a relatively non-invasive way to study animal diet and has been widely adopted in ecological research. Due to the heterogeneous nature of faecal material the primary obstacle, common to all genetic approaches, is a means to dissect the constituent DNA sequences. Traditionally, bacterial cloning of PCR amplified products was employed; less common has been the use of species-specific quantitative PCR (qPCR) assays. Currently, with the advent of High-Throughput Sequencing (HTS) technologies and indexed primers it has become possible to conduct genetic audits of faecal material to a much greater depth than previously possible. To date, no studies have systematically compared the estimates obtained by HTS with that of qPCR. What are the relative strengths and weaknesses of each technique and how quantitative are deep-sequencing approaches that employ universal primers? Using the locally threatened Little Penguin (Eudyptula minor) as a model organism, it is shown here that both qPCR and HTS techniques are highly correlated and produce strikingly similar quantitative estimates of fish DNA in faecal material, with no statistical difference. By designing four species-specific fish qPCR assays and comparing the data to the same four fish in the HTS data it was possible to directly compare the strengths and weaknesses of both techniques. To obtain reproducible quantitative data one of the key, and often overlooked, steps common to both approaches is ensuring that efficient DNA isolation methods are employed and that extracts are free of inhibitors. Taken together, the methodology chosen for long-term faecal monitoring programs is largely dependent on the complexity of the prey species present and the level of accuracy that is desired. Importantly, these methods should not be thought of as mutually exclusive, as the use of both HTS and qPCR in tandem will generate datasets with the highest fidelity.
Uploads
Papers by James Haile