Papers by Ibrahim M Mehedi
Inorganic Chemistry Communications

Diagnostics
Through a wireless capsule endoscope (WCE) fitted with a miniature camera (about an inch), this s... more Through a wireless capsule endoscope (WCE) fitted with a miniature camera (about an inch), this study aims to examine the role of wireless capsule endoscopy (WCE) in the diagnosis, monitoring, and evaluation of GI (gastrointestinal) disorders. In a wearable belt recorder, a capsule travels through the digestive tract and takes pictures. It attempts to find tiny components that can be used to enhance the WCE. To accomplish this, we followed the steps below: Researching current capsule endoscopy through databases, designing and simulating the device using computers, implanting the system and finding tiny components compatible with capsule size, testing the system and eliminating noise and other problems, and analyzing the results. In the present study, it was shown that a spherical WCE shaper and a smaller WCE with a size of 13.5 diameter, a high resolution, and a high frame rate (8–32 fps) could help patients with pains due to the traditional capsules and provide more accurate pictur...

Materials
We report the synthesis of Fe3O4/graphene (Fe3O4/Gr) nanocomposite for highly selective and highl... more We report the synthesis of Fe3O4/graphene (Fe3O4/Gr) nanocomposite for highly selective and highly sensitive peroxide sensor application. The nanocomposites were produced by a modified co-precipitation method. Further, structural, chemical, and morphological characterization of the Fe3O4/Gr was investigated by standard characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and high-resolution TEM (HRTEM), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The average crystal size of Fe3O4 nanoparticles was calculated as 14.5 nm. Moreover, nanocomposite (Fe3O4/Gr) was employed to fabricate the flexible electrode using polymeric carbon fiber cloth or carbon cloth (pCFC or CC) as support. The electrochemical performance of as-fabricated Fe3O4/Gr/CC was evaluated toward H2O2 with excellent electrocatalytic activity. It was found that Fe3O4/Gr/CC-based electrodes show a good line...

Computational Intelligence and Neuroscience
The capacity to carry out one’s regular tasks is affected to varying degrees by hearing difficult... more The capacity to carry out one’s regular tasks is affected to varying degrees by hearing difficulties. Poorer understanding, slower learning, and an overall reduction in efficiency in academic endeavours are just a few of the negative impacts of hearing impairments on children’s performance, which may range from mild to severe. A significant factor in determining whether or not there will be a decrease in performance is the kind and source of impairment. Research has shown that the Artificial Neural Network technique is capable of modelling both linear and nonlinear solution surfaces in a trustworthy way, as demonstrated in previous studies. To improve the precision with which hearing impairment challenges are diagnosed, a neural network backpropagation approach has been developed with the purpose of fine-tuning the diagnostic process. In particular, it highlights the vital role performed by medical informatics in supporting doctors in the identification of diseases as well as the fo...

Computational Intelligence and Neuroscience
A combination of environmental conditions may cause skin illness everywhere on the earth, and it ... more A combination of environmental conditions may cause skin illness everywhere on the earth, and it is one of the most dangerous diseases that can develop as a result. A major goal in the selection of characteristics is to produce predictions about skin disease instances in connection with influencing variables, which is one of the most important tasks. As a consequence of the widespread usage of sensors, the amount of data collected in the health industry is disproportionately large when compared to data collected in other sectors. In the past, researchers have used a variety of machine learning algorithms to determine the relationship between illnesses and other disorders. Forecasting is a procedure that involves many steps, the most important of which are the preprocessing of any scenario and the selection of forecasting features. A major disadvantage of doing business in the health industry is a lack of data availability, which is particularly problematic when data is provided in a...

Journal of Renewable and Sustainable Energy, 2022
Using electronic coordinated control of governor and blade in the wind integrated hybrid power sy... more Using electronic coordinated control of governor and blade in the wind integrated hybrid power system, this study evaluated four proposed techniques for minimizing output fluctuations owing to high wind power penetration. Four cases were investigated for simulation analysis in this study. The power system frequency and energy generation were used as indexes to evaluate the best-proposed techniques. The control of all wind turbine blade angles was demonstrated using a constant and variable reference power generating technique. In terms of wind farm output power characteristics, grid frequency fluctuations, and wind farm energy levels, case 2 performed better than other suggested systems (cases 1, 3, and 4). Frequency deviations were kept to a minimum of ±0.2 Hz. The performance of the power system with higher wind power penetration was investigated using a numerical analysis employing a multi-machine power system model. The real wind speed data were recorded on Hokkaido Island, Japan.

Optical and Quantum Electronics, 2020
An analytical model has been developed to investigate the activation energy profile in Mgdoped pA... more An analytical model has been developed to investigate the activation energy profile in Mgdoped pAl x Ga 1−x N alloy for the entire range of Al composition. For any Al content, the calculated activation energy quantitatively shows a good agreement with experimental result which has also been confirmed by both Hydrogen atom model and effective Bohr radius model. Through this empirical analysis, a breakthrough is apparent for the hole concentration and sheet resistivity with particular Al concentration. It is found that the hole concentration is < 10 17 cm −3 while the Al content, x > 30% in pAl x Ga 1-x N. Moreover, the sheet resistivity is found to be < 1 Ω-cm up to the Al content of 30%. Finally, the temperature-induced changing behavior of hole concentration and sheet resistivity have been explored here. These results could be a good insight for fabricating the AlGaN-based realworld devices for future optoelectronics.

Bioinorganic Chemistry and Applications
In the present study, a highly selective and sensitive electrochemical sensing platform for the d... more In the present study, a highly selective and sensitive electrochemical sensing platform for the detection of dopamine was developed with CuO nanoparticles embedded in N-doped carbon nanostructure (CuO@NDC). The successfully fabricated nanostructures were characterized by standard instrumentation techniques. The fabricated CuO@NDC nanostructures were used for the development of dopamine electrochemical sensor. The reaction mechanism of a dopamine on the electrode surface is a three-electron three-proton process. The proposed sensor’s performance was shown to be superior to several recently reported investigations. Under optimized conditions, the linear equation for detecting dopamine by differential pulse voltammetry is Ipa (μA) = 0.07701 c (μM) − 0.1232 (R2 = 0.996), and the linear range is 5-75 μM. The limit of detection (LOD) and sensitivity were calculated as 0.868 μM and 421.1 μA/μM, respectively. The sensor has simple preparation, low cost, high sensitivity, good stability, and...

This research paper reports a unique autonomous robot design with reduced blind spot areas. The n... more This research paper reports a unique autonomous robot design with reduced blind spot areas. The new robot is not only cost-effective but also has improved sensing and accuracy capabilities. The design and fabrication of the new autonomous robot involved the use of the following hardware components: servo motors, infrared or ultrasonic sensors, and a microcontroller. The developmental work involved the design of the line follower and obstacle avoidance robot system using two pairs of line follower circuits and five (5) ultrasonic sensors circuits, including some supporting circuits. The better solution for the line follower and obstacle avoidance functions are provided by using four (4) pairs of LEDs for the receiver, line dependent resistor (LDR) for the line tracking sensor, and five (5) ultrasonic sensors to detect the obstacles. A mechanical structure and motor placement for the electronic device has been fabricated that can perform functions of sensing the obstacle and avoiding ...

Computers, Materials & Continua
This paper describes a system designed for linear servo cart systems that employs an integral-bas... more This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control (ILADRC) scheme to detect and respond to disturbances. The upgrade in this control technique provides extensive immunity to uncertainties, attenuation, internal disturbances, and external sources of noise. The fundamental technology base of LADRC is Extended State Observer (ESO). LADRC, when combined with Integral action, becomes a hybrid control technique, namely ILADRC. Setpoint tracking is based on Bode's Ideal Transfer Function (BITF) in this proposed ILADRC technique. This proves to be a very robust and appropriate pole placement scheme. The proposed LSC system has experimented with the hybrid ILADRC technique plotted the results. From the results, it is evident that the proposed ILADRC scheme enhances the robustness of the LSC system with remarkable disturbance rejection. Furthermore, the results of a linear quadratic regulator (LQR) and ILADRC schemes are comparatively analyzed. This analysis deduced the improved performance of ILADRC over the LQR control scheme.

2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)
Balancing control of a double inverted pendulum is a great challenge as it is an unstable and non... more Balancing control of a double inverted pendulum is a great challenge as it is an unstable and non-linear system that requires fast control reaction. In this paper, a dynamic inversion controller is proposed for balancing control of a rotary double inverted pendulum system. The controller consists of two loops where the outer loop is responsible for generating desired position command while the inner loop takes the command to produce the actual control action. The robustness of the controller is added by the introduction of the sliding surface vector function. The effectiveness of the proposed controller is investigated through numerical simulations with two other types of controllers that are also tested for comparison purposes. The results prove that the proposed controller capable of balancing the rotary double inverted pendulum under the influence of disturbances, while comparisons with Sliding Mode Controller (SMC) and Linear Quadratic Regulator (LQR) in various scenarios suggested that the proposed controller was the most consistent controller as opposed to the other two.

Computers, Materials & Continua, 2022
The Ball and beam system (BBS) is an attractive laboratory experimental tool because of its inher... more The Ball and beam system (BBS) is an attractive laboratory experimental tool because of its inherent nonlinear and open-loop unstable properties. Designing an effective ball and beam system controller is a real challenge for researchers and engineers. In this paper, the control design technique is investigated by using Intelligent Dynamic Inversion (IDI) method for this nonlinear and unstable system. The proposed control law is an enhanced version of conventional Dynamic Inversion control incorporating an intelligent control element in it. The Moore-Penrose Generalized Inverse (MPGI) is used to invert the prescribed constraint dynamics to realize the baseline control law. A sliding mode-based intelligent control element is further augmented with the baseline control to enhance the robustness against uncertainties, nonlinearities, and external disturbances. The semi-global asymptotic stability of IDI control is guaranteed in the sense of Lyapunov. Numerical simulations and laboratory experiments are carried out on this ball and beam physical system to analyze the effectiveness of the controller. In addition to that, comparative analysis of RGDI control with classical Linear Quadratic Regulator and Fractional Order Controller are also presented on the experimental test bench.

Energies
A chance-constrained programming-based optimization model for the dynamic economic emission dispa... more A chance-constrained programming-based optimization model for the dynamic economic emission dispatch problem (DEED), consisting of both thermal units and wind turbines, is developed. In the proposed model, the probability of scheduled wind power (WP) is included in the set of problem-decision variables and it is determined based on the system spinning reserve and the system load at each hour of the horizon time. This new strategy avoids, on the one hand, the risk of insufficient WP at high system load demand and low spinning reserve and, on the other hand, the failure of the opportunity to properly exploit the WP at low power demand and high spinning reserve. The objective functions of the problem, which are the total production cost and emissions, are minimized using a new hybrid chaotic maps-based artificial bee colony (HCABC) under several operational constraints, such as generation capacity, system loss, ramp rate limits, and spinning reserve constraints. The effectiveness and f...

Computers, Materials & Continua, 2022
A linear flexible joint system using fractional order linear active disturbance rejection control... more A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper. With this control scheme, the performance against disturbances, uncertainties, and attenuation is enhanced. Linear active disturbance rejection control (LADRC) is mainly based on an extended state observer (ESO) technology. A fractional integral (FOI) action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC. Incorporating this FOI action improves the robustness of the standard LADRC. The set-point tracking of the proposed FO-LADRC scheme is designed by Bode's ideal transfer function (BITF) based robust closed-loop concept, an appropriate pole placement method. The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system (LFJS). The results show the enhancement of the robustness with disturbance rejection. Furthermore, a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.

Optics Continuum, 2022
In this article, a graphene-based multilayered surface plasmon resonance (SPR) biosensor of (BK 7... more In this article, a graphene-based multilayered surface plasmon resonance (SPR) biosensor of (BK 7 /WS 2 /Au/BaTiO 3 /Graphene) is proposed for the rapid detection of the novel coronavirus (COVID-19). The proposed SPR biosensor is designed based on the angular interrogation attenuated total reflection (ATR) method for rapid detection of the COVID-19 virus. The sensor&#39;s surface plasmon polaritons (SPPs) and the sensing region refractive index (RI) are changed, owing to the interaction of various concentrated ligand-analytes. The specific ligand is mechanized with the proposed sensor surface and the target analyte that has flowed onto the sensing surface. The proposed sensor is capable of detecting the COVID-19 virus rapidly in two different ligand-analytes environments, such as: (i) the virus spike receptor-binding domain (RBD) as an analyte and monoclonal antibodies (mAbs) as a probe ligand, and (ii) the monoclonal antibodies (IgG or IgM) as an analyte and the virus spike RBD as a probe ligand. Due to the binding of the target ligand-analytes, the concentration level of the sensing region is incremented. As the increment in the concentration level, the RI of the sensing medium increases, therefore the change in RI causes the shift in the SPR angle resulting in the output reflectance intensity. The performance of the multilayered SPR sensor is analyzed numerically using the finite element method (FEM) method. Numerically, the proposed sensor provides the maximum angular shift sensitivity at 230.77 deg/refractive index unit (RIU), detection accuracy (DA) at 0.161 deg −1 , and the figure of merits (FOM) is at 37.22 RIU −1. In addition, with each additional graphene layer number (L), the proposed sensor exhibits the angular shift sensitivity increment (1 + 0.7L) times. The novelty of the proposed multilayer (BK 7 /WS 2 /Au/BaTiO 3 /Graphene) sensor is highly angular sensitivity, and capable of detecting the COVID-19 virus rapidly without a false-positive report.

In recent times, wind energy receives maximum attention and has become a significant green energy... more In recent times, wind energy receives maximum attention and has become a significant green energy source globally. The wind turbine (WT) entered into several domains such as power electronics that are employed to assist the connection process of a wind energy system and grid. The turbulent characteristics of wind profile along with uncertainty in the design of WT make it highly challenging for prolific power extraction. The pitch control angle is employed to effectively operate the WT at the above nominal wind speed. Besides, the pitch controller needs to be intelligent for the extraction of sustainable secure energy and keep WTs in a safe operating region. To achieve this, proportional-integral-derivative (PID) controllers are widely used and the choice of optimal parameters in the PID controllers needs to be properly selected. With this motivation, this paper designs an oppositional brain storm optimization (OBSO) based fractional order PID (FOPID) design for sustainable and secure energy in WT systems. The proposed model aims to effectually extract the maximum power point (MPPT) in the low range of weather conditions and save the WT in high wind regions by the use of pitch control. The OBSO algorithm is derived from the integration of oppositional based learning (OBL) concept with the traditional BSO algorithm in order to improve the convergence rate, which is then applied to effectively choose the parameters involved in the FOPID controller. The performance of the presented model is validated on the pitch control of a 5 MW WT and the results are examined under different dimensions. The simulation outcomes ensured the promising characteristics of the proposed model over the other methods.

Computers, Materials & Continua, 2022
Tracking load changes in a pressurized water reactor (PWR) with the help of an efficient core pow... more Tracking load changes in a pressurized water reactor (PWR) with the help of an efficient core power control scheme in a nuclear power station is very important. The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR. To overcome the uncertainties, a non-integer-based fractional order control method is demonstrated to control the core power of PWR. The available dynamic model of the reactor core is used in this analysis. Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations, CRONE (Commande Robuste d'Ordre Non Entier, meaning Non-integer order Robust Control) and FOMCON (non-integer order modeling and control). Simulation results are produced using MATLAB ® program. Both non-integer results are compared with an integer order PI (Proportional Integral) algorithm to justify the effectiveness of the proposed scheme. Sate-space model Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON.
In this paper, the experimental procedure for the acquisition of EMG and accelerometer data is ex... more In this paper, the experimental procedure for the acquisition of EMG and accelerometer data is explained. From the data, tremor frequency is evaluated. Tremor is an involuntary shaking of the body or the limbs which is considered as an early symptom of Parkinson's disease. EMG instrument, sensors, selection of muscles in the study, data acquisition procedure, analysis of EMG and accelerometer signal is discussed in this paper.

This paper investigates the concept of the new generation smart power grid that includes gridable... more This paper investigates the concept of the new generation smart power grid that includes gridable vehicles and renewable energy sources. Here it is analyzed the feasibility of developing a real-time dynamic stochastic optimization approach that will result in a combined cost-emission reduction by the maximum utilization of clean energy sources. The concept in this paper is look at a gridable vehicle (GV) as a small portable power plant (SP3) and a smart parking lot (Smart Park) as a virtual power plant (VPP). After an extensive investigation of existing literature review, it is recommended that a dynamic stochastic optimization (DSO) approach can be used to automatically schedule and coordinate non-stationary sources to get full benefits of renewable energysources (RESs) such that (1) load demand can be leveled; (2) cost and emissionwill be reduced; (3) reserve and reliability of a smart grid can be increasedwhen millions of new loads, e.g., GVs, are to be integrated.
Uploads
Papers by Ibrahim M Mehedi