Papers by Agostino Stilli

— There is an emerging trend towards soft robotics due to its extended manipulation capabilities ... more — There is an emerging trend towards soft robotics due to its extended manipulation capabilities compared to traditionally rigid robot links, showing promise for an extended applicability to new areas. However, as a result of the inherent property of soft robotics being less rigid, the ability to control/obtain higher overall stiffness when required is yet to be further explored. In this paper, an innovative design is introduced which allows varying the stiffness of a continuum silicon-based manipulator and proves to have potential for applications in Minimally Invasive Surgery. Inspired by muscular structures occurring in animals such as the octopus, we propose a hybrid and inherently antagonstic actuation scheme. In particular, the octopus makes use of this principle activating two sets of muscles-longitudinal and transverse muscles-thus, being capable of controlling the stiffness of parts of its arm in an antagonistic fashion. Our designed manipulator is pneumatically actuated employing chambers embedded within the robot's silicone structure. Tendons incorporated in the structure complement the pneumatic actuation placed inside the manipulator's wall to allow variation of overall stiffness. Experiments are carried out by applying an external force in different configurations while changing the stiffness by means of the two actuation mechanisms. Our test results show that dual, antagonistic actuation increases the load bearing capabilities for soft continuum manipulators and thus their range of applications.

This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera... more This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analysing the behaviour of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.
Uploads
Papers by Agostino Stilli