
1/38

Path Querying on Graph Databases

Jelle Hellings
Hasselt University and transnational University of Limburg

2/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

3/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

4/38

Graphs

I Pieces of data (nodes)

I Relations between the pieces of data (edges)

Example (Social networks)

Jelle

UHasselt

worksAt

Jan

worksAt

worksWith

5/38

Applications

I XML and RDF,

I Social networks,

I Transportation networks,

I The World Wide Web,

I . . .

6/38

Graph Database: Google Maps

I Nodes: points of interest, addresses, . . .

I Edges: road network

I Queries:

Example (Distance based query)

university close to <my address>
(answer: Universiteit Hasselt; 5.2 km)

Example (Route-planning query)

From: <my address>, to: <university>
(answer: options for university; followed by route)

7/38

Challenges

I Engineering: big data
Storage, distributed processing, hardware failures, . . .

I Conceptual: semantics and consistency
Structured data (facebook) versus structured? data (the web)

I Conceptual: data querying
Local/navigational based versus graph-wide path based

I No widely used general purpose languages
I Current practice: application specific languages

Our focus

Path-based graph querying

7/38

Challenges

I Engineering: big data
Storage, distributed processing, hardware failures, . . .

I Conceptual: semantics and consistency
Structured data (facebook) versus structured? data (the web)

I Conceptual: data querying
Local/navigational based versus graph-wide path based

I No widely used general purpose languages
I Current practice: application specific languages

Our focus

Path-based graph querying

8/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

9/38

Motivation

I Expressing graph-queries

I Properties of paths, walks, . . .

Route planning

We want to travel from our office to a cafetaria and from this
cafetaria get back to the office using a different route

10/38

Graph querying

Graphs as traditional relations

worksAt(person, company)

I Already deep knowledge of these systems

I First-order based query languages:

Q(n) := ∃mworksWith(n,m) ∧worksAt(m, UHasselt)

I Largely restricted to ‘local’ reasoning
no paths, no or only limited reachability, . . .

11/38

Higher-order logics

Monadic second-order logic

Extend first-order logic with quantification over sets

I Strong theoretical background
I Sets with only nodes versus sets with nodes and edges

I Some graph problems are naturally expressible with sets:
I Graph coloring, bipartite graph, . . .

∃S∃T (∀x (x ∈ S ∨ x ∈ T)∧
(x ∈ S =⇒ x 6∈ T) ∧ (x ∈ T =⇒ x 6∈ S)∧

∀y edge(x , y) =⇒ ((x ∈ S ∧ y ∈ T) ∨ (y ∈ S ∧ x ∈ T)))

I Paths non-straightforward: y is reachable from x

∀S [(x ∈ S) ∧ ∀u∀v (u ∈ S ∧ edge(u, v) =⇒ v ∈ S) =⇒ y ∈ S]

12/38

Conjunctive Regular Path Queries

Idea

I Query nodes based on labelling of paths between nodes

I Express labelling by a regular expression

Example

Q(a, b) := aπb, (αβ + γδ)+(π)

n1 n2
α n3

β
n4

γ

n5

δ

n6
γ

n7
α n8

β
δ

12/38

Conjunctive Regular Path Queries

Idea

I Query nodes based on labelling of paths between nodes

I Express labelling by a regular expression

Example

Q(a, b) := aπb, (αβ + γδ)+(π)

n1 n2
α n3

β
n4

γ

n5

δ

n6
γ

n7
α n8

β
δ

12/38

Conjunctive Regular Path Queries

Idea

I Query nodes based on labelling of paths between nodes

I Express labelling by a regular expression

Example

Q(a, b) := aπb, (αβ + γδ)+(π)

n1 n2
α n3

β
n4

γ

n5

δ

n6
γ

n7
α n8

β
δ

13/38

Extended Conjunctive Regular Path Queries

Idea

Comparing labelling of paths

I Regular expressions over n-tuples

I Use special symbol ⊥ to specify end-of-path

Example

Q(a, b) := aπ1b, aπ2b, ([αβ]
+

[α⊥])(π1, π2)

n1 n2
α n3

α n4
α

n6

β

n7
β

n8
β

α

14/38

Computation tree logic∗

Usage: verification of formal models

I Describe behaviour by a transition system (graph)

I Write propositions that should hold

Example

buy start idle work

crash

shutdown

giveUp

14/38

Computation tree logic∗

Usage: verification of formal models

I Describe behaviour by a transition system (graph)

I Write propositions that should hold

Example

buy start idle work

crash

shutdown

giveUp

Machine never crashes: AG¬crash

14/38

Computation tree logic∗

Usage: verification of formal models

I Describe behaviour by a transition system (graph)

I Write propositions that should hold

Example

buy start idle work

crash

shutdown

giveUp

Machine can work without crashing: EG¬crash

15/38

Hybrid CTL∗

Idea

I CTL∗ has only implicit paths and nodes

I Add ability to name nodes in our formulae

Example

a b

v1

v2

v3

¬v2 ¬v2

We can get from a to b in two different ways:

E ↓v1 EF(↓v2 EXF(b∧ ↓v3 @v1 E(¬v2U v3)))

15/38

Hybrid CTL∗

Idea

I CTL∗ has only implicit paths and nodes

I Add ability to name nodes in our formulae

Example

a b
v1

v2

v3

¬v2 ¬v2

We can get from a to b in two different ways:

E ↓v1 EF(↓v2 EXF(b∧ ↓v3 @v1 E(¬v2U v3)))

15/38

Hybrid CTL∗

Idea

I CTL∗ has only implicit paths and nodes

I Add ability to name nodes in our formulae

Example

a b
v1

v2

v3

¬v2 ¬v2

We can get from a to b in two different ways:

E ↓v1 EF(↓v2 EXF(b∧ ↓v3 @v1 E(¬v2U v3)))

15/38

Hybrid CTL∗

Idea

I CTL∗ has only implicit paths and nodes

I Add ability to name nodes in our formulae

Example

a b
v1

v2

v3

¬v2 ¬v2

We can get from a to b in two different ways:

E ↓v1 EF(↓v2 EXF(b∧ ↓v3 @v1 E(¬v2U v3)))

15/38

Hybrid CTL∗

Idea

I CTL∗ has only implicit paths and nodes

I Add ability to name nodes in our formulae

Example

a b
v1

v2

v3

¬v2 ¬v2

We can get from a to b in two different ways:

E ↓v1 EF(↓v2 EXF(b∧ ↓v3 @v1 E(¬v2U v3)))

16/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

17/38

Walk Logic

Idea: extend first-order logic

I Add walks

I Add positions on walks

I Necessary operators to compare positions

Route planning

We want to travel from our office to a cafetaria (R) and from this
cafetaria get back to the office using a different route (S)

∃R∃S∃t1
R∃t2

R∃u1
S∃u2

S∃u3
S

(office(t1) ∧ t1 < t2 ∧ cafeteria(t2) ∧ u1 < u3 < u2

∧ u1 ∼ t2 ∧ u2 ∼ t1 ∧ ∀t3
R(t1 < t3 < t2 =⇒ t3 6∼ u3))

18/38

Definitions

Definition (Directed node-labeled graph)

A directed node-labeled graph is a triple G = (N,E , l):

I N is a finite set of nodes

I E ⊆ N × N is the set of edges

I l : N → 2AP is a node-label function

19/38

Walk Logic

I Walk variables

I Position variables per walk variable

Atomic Formulae
a(t) Node referred to by position variable t has labelling a
t1 ∼ t2 Position variables t1, t2 refer to the same node
t1 < t2 Position variable t1 comes before t2 in walk W

Position variables t1 and t2 must be of the same sort

ϕ, ψ are formulae

¬ϕ,ϕ ∨ ψ Negation and disjunction
∃W ϕ Quantification over walks
∃tW ϕ Quantification over positions on walks

20/38

Semantics: ‘walks’?

Definition

Infinite walk A finite or infinite sequence v1 . . . of nodes such that
(vi , vi+1) ∈ E for each 1 ≤ i ≤ |v1 . . . |

Walk A nonempty finite sequence v1 . . . vn of nodes such
that (vi , vi+1) ∈ E for each 1 ≤ i ≤ n

Trail A walk without edge repetition

Path A walk without node repetition

I CTL∗ and Hybrid CTL∗: primarily infinite walks

I CRPQs: primarily walks

20/38

Semantics: ‘walks’?

Definition

Infinite walk A finite or infinite sequence v1 . . . of nodes such that
(vi , vi+1) ∈ E for each 1 ≤ i ≤ |v1 . . . |

Walk A nonempty finite sequence v1 . . . vn of nodes such
that (vi , vi+1) ∈ E for each 1 ≤ i ≤ n

Trail A walk without edge repetition

Path A walk without node repetition

I CTL∗ and Hybrid CTL∗: primarily infinite walks

I CRPQs: primarily walks

21/38

Semantics: expressive power

Hierarchy of expressive power

Infinite walk A walk W is finite:

∃tW ¬∃uW t < u

Walk A walk is a trail (informally):

∀tW∀uW (t ∼ u ∧ t+1 ∼ u+1) =⇒ t = u

Trail A trail W is a path (informally):

∀tW∀uW t ∼ u =⇒ t = u

Path Logic � Trail Logic �Walk Logic � Infinite Walk Logic

22/38

Walk-based Graph Properties

Example (Hamiltonian Path (in Path Logic))

∃P∀Q∀tQ∃uP (t ∼ u)

Example (Eulerian Trail (in Trail Logic))

∃T∀Q∀tQ∃uT (t ∼ u) ∧ (t+1 ∼ u+1)

Example (Strongly Connected)

∀P∀Q∀tP∀uQ∃R∃vR∃wR (v < w ∧ t ∼ v ∧ u ∼ w)

23/38

Properties on undirected graphs

Theorem

Weakly Connected is not expressible on directed graphs

Proof.

n1 n2 n3 n4 n5 n6

All walks contain at most 2 nodes: reduce to first-order logic

I Direction matters!

I On undirected graphs:

Weakly Connected same way as strongly connected
Planar Graph using Kuratowski’s Theorem

24/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

25/38

MSO(nodes, edges) and paths

Observations

I Path: sequence of connected edges

I No node repetition: nodes and positions coincide

I Node a before node b on path P if and only if
Node b is reachable from a using the edges in P

Theorem

Path Logic ≺ MSO(nodes, edges)

26/38

Set-based Graph Properties

Theorem

Bipartite graph is not expressible on directed graphs

Lemma (Dénes Kőnig)

A graph is bipartite iff it does not contain an odd cycle

Proof.

n1

n2 n3

m1

m2 m3 m4

m5m6

All walks contain at most 3 nodes: reduce to first-order logic

I MSO(nodes) can express bipartite graph

I Is Walk Logic strictly subsumed by MSO?

27/38

Eulerian Trail

Theorem

MSO(nodes, edges) cannot express Eulerian Trail

Lemma (well known result)

MSO cannot distinguish sets with i from sets with j elements

Proof.

For MSO: existence of Eulerian Trail in the graph

a1

...

an

v1

v2

b1

...

bm

=⇒

a1

...

an

b1

...

bm

Reduces to sets A and B having the equal number of elements

28/38

Relations with FO and MSO

I We have FO ≺ Path Logic ≺ MSO(nodes, edges)

I Trail Logic, Walk Logic, and Infinite Walk Logic are
incomparable with MSO(nodes) and MSO(nodes, edges)

Lemma (Courcelle and Engelfriet)

MSO(nodes) cannot express Hamiltonian Path

I Path Logic and MSO(nodes) are incomparable

Path Logic ≺ Trail Logic ≺ 1Walk Logic � Infinite Walk Logic

1The proof for Trail Logic ≺ Walk Logic is omitted but is similar to the
proof of Path Logic ≺ Trail Logic

29/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

30/38

Review: Hybrid CTL∗

Definition

Let a be an atomic proposition, x a node variable, ϕ1 and ϕ2 node
formulas, ψ1 and ψ2 path formulas

Node formulas

ϕ ::= a | x | ¬ϕ1 | ϕ1 ∨ ϕ2 |↓x ϕ1 | @x ϕ1 | Eψ

Path formulas
ψ ::= ϕ | ¬ψ1 | ψ1 ∨ ψ1 | Xψ1 | ψ1Uψ2

31/38

Translating Hybrid CTL∗ to Walk Logic

Idea

Node formulas Properties of single node:
translate to properties of single position

Hybrid extensions Named nodes:
translate to named position variables

Path formulas Properties on a single path with forward navigation:
translate to walk variable; keep track of current
position using position variables and <

CTL∗ ≺ Hybrid CTL∗ � Infinite Walk Logic

31/38

Translating Hybrid CTL∗ to Walk Logic

Idea

Node formulas Properties of single node:
translate to properties of single position

Hybrid extensions Named nodes:
translate to named position variables

Path formulas Properties on a single path with forward navigation:
translate to walk variable; keep track of current
position using position variables and <

CTL∗ ≺ Hybrid CTL∗ � Infinite Walk Logic

32/38

Hybrid CTL∗ ≺ Infinite Walk Logic?

Theorem

Hybrid CTL∗ ≺ Infinite Walk Logic

Proof.

I CTL∗ ≺ Infinite Walk Logic as CTL∗ is invariant under
bisimulation

I Hybrid CTL∗ ≺ Infinite Walk Logic as Hybrid CTL∗ is
invariant under generated submodels

CTL∗ ≺ Hybrid CTL∗ ≺ Infinite Walk Logic

Walk Logic � Infinite Walk Logic

32/38

Hybrid CTL∗ ≺ Infinite Walk Logic?

Theorem

Hybrid CTL∗ ≺ Infinite Walk Logic

Proof.

I CTL∗ ≺ Infinite Walk Logic as CTL∗ is invariant under
bisimulation

I Hybrid CTL∗ ≺ Infinite Walk Logic as Hybrid CTL∗ is
invariant under generated submodels

CTL∗ ≺ Hybrid CTL∗ ≺ Infinite Walk Logic

Walk Logic � Infinite Walk Logic

32/38

Hybrid CTL∗ ≺ Infinite Walk Logic?

Theorem

Hybrid CTL∗ ≺ Infinite Walk Logic

Proof.

I CTL∗ ≺ Infinite Walk Logic as CTL∗ is invariant under
bisimulation

I Hybrid CTL∗ ≺ Infinite Walk Logic as Hybrid CTL∗ is
invariant under generated submodels

CTL∗ ≺ Hybrid CTL∗ ≺ Infinite Walk Logic

Walk Logic � Infinite Walk Logic

33/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

34/38

CRPQs versus Walk Logics

Different languages!

Focus on path labelling versus focus on path-structure of graphs

I All CRPQs are incomparable with all Walk Logics.

I Similar semantically questions

I Similar proof techniques

34/38

CRPQs versus Walk Logics

Different languages!

Focus on path labelling versus focus on path-structure of graphs

I All CRPQs are incomparable with all Walk Logics.

I Similar semantically questions

I Similar proof techniques

35/38

Some results

I Hamiltonian path cannot be expressed

I Eulerian trail cannot be expressed

Paths versus Walks

CRPQ with paths can express queries not expressible in the
strongest language with Walks!

35/38

Some results

I Hamiltonian path cannot be expressed

I Eulerian trail cannot be expressed

Paths versus Walks

CRPQ with paths can express queries not expressible in the
strongest language with Walks!

36/38

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL∗ and Hybrid CTL∗

Conjunctive Regular Path Queries

Open Problems and Conclusion

37/38

Open Problems

I Walk Logic versus Infinite Walk Logic:
I Infinite walks are the standard in verification logics
I Can we express the verification logics in Walk Logic?
I Also interesting: finite CTL∗ versus infinite CTL∗

I Complexity bounds on model checking for WL:
I WL model checking is decidable
I Current approach has horrible complexity

38/38

Conclusion

I General walk-based reasoning on graphs

I Relates to practical graph languages

I Framework for studying expressivity

	Graph Databases
	Motivation
	Walk Logic
	Relations with FO and MSO
	Relations with CTL* and Hybrid CTL*
	Conjunctive Regular Path Queries
	Open Problems and Conclusion

