Path Querying on Graph Databases

Jelle Hellings
Hasselt University and transnational University of Limburg

Overview

Graph Databases

Motivation

Walk Logic

Relations with FO and MSO

Relations with CTL* and Hybrid CTL*
Conjunctive Regular Path Queries

Open Problems and Conclusion

Overview

Graph Databases

Graphs

» Pieces of data (nodes)

> Relations between the pieces of data (edges)

Example (Social networks)

Jelle
works W:V \Works/\t

UHasselt

_/

worksAt

Applications

v

XML and RDF,
Social networks,

v

v

Transportation networks,
The World Wide Web,

v

Graph Database: Google Maps

» Nodes: points of interest, addresses, ...
» Edges: road network

» Queries:

Example (Distance based query)

university close to <my address>
(answer: Universiteit Hasselt; 5.2 km)

Example (Route-planning query)

From: <my address>, to: <university>
(answer: options for university; followed by route)

Challenges

» Engineering: big data

Storage, distributed processing, hardware failures, . ..
» Conceptual: semantics and consistency

Structured data (facebook) versus structured? data (the web)
» Conceptual: data querying

Local/navigational based versus graph-wide path based

» No widely used general purpose languages
» Current practice: application specific languages

~

Challenges

» Engineering: big data
Storage, distributed processing, hardware failures, . ..
» Conceptual: semantics and consistency
Structured data (facebook) versus structured? data (the web)

» Conceptual: data querying
Local/navigational based versus graph-wide path based

» No widely used general purpose languages
» Current practice: application specific languages

QOur focus

Path-based graph querying

~

Overview

Motivation

Motivation

» Expressing graph-queries

» Properties of paths, walks, ...

Route planning

We want to travel from our office to a cafetaria and from this
cafetaria get back to the office using a different route

Graph querying

Graphs as traditional relations

worksAt(person, company)

» Already deep knowledge of these systems

» First-order based query languages:
Q(n) := ImworksWith(n, m) A worksAt(m, UHasselt)

» Largely restricted to ‘local’ reasoning
no paths, no or only limited reachability, . ..

Higher-order logics

Monadic second-order logic

Extend first-order logic with quantification over sets

» Strong theoretical background
» Sets with only nodes versus sets with nodes and edges
» Some graph problems are naturally expressible with sets:
» Graph coloring, bipartite graph, ...

3S3T (Vx(xe SVvxe T)A
(xe€S = x¢g€T)AN(xeT = x¢&S)A
Vyedge(x,y) = (x€SAyeT)V(yeSAXxeT)))

» Paths non-straightforward: y is reachable from x
VS[(x € S)AVuVv(u € S Nedge(u,v) = veES) = yeS]

Conjunctive Regular Path Queries

Idea

» Query nodes based on labelling of paths between nodes

> Express labelling by a regular expression
Example

Q(a, b) := armb, (B +v0)" ()

« B Y
n — Np — N3 — Na

%7 ﬁJa

n5ﬂn6$n7ﬂng

Conjunctive Regular Path Queries

Idea

» Query nodes based on labelling of paths between nodes

> Express labelling by a regular expression
Example

Q(a, b) := armb, (B +v0)" ()

« B Y
n — Np — N3 — Na

5[7 ﬂJa

n5—>n6in7—>ng

Conjunctive Regular Path Queries

Idea

» Query nodes based on labelling of paths between nodes

> Express labelling by a regular expression
Example

Q(a, b) := armb, (B +v0)" ()

« B Y
n]_ > n2 > n3 > n4

5[é
B

n5—>n6in7—>n8

Extended Conjunctive Regular Path Queries

ldea
Comparing labelling of paths
» Regular expressions over n-tuples

> Use special symbol | to specify end-of-path
Example

Q(a’ b) := am b, amyb, ([g]+ [i])(ﬂ-lv 772)

« « o’
n — N — N3 — Na

Computation tree logic*
Usage: verification of formal models

» Describe behaviour by a transition system (graph)

» Write propositions that should hold
Example

TN

buy start idle work

\%crgsthiveUp

Computation tree logic*
Usage: verification of formal models

» Describe behaviour by a transition system (graph)

» Write propositions that should hold
Example

TN

buy start idle work

\%crgsthiveUp

Machine never crashes: A G —crash

Computation tree logic*
Usage: verification of formal models

» Describe behaviour by a transition system (graph)

» Write propositions that should hold

Example

—— buy —— start > idle work

Machine can work without crashing: E G —crash

giveUp

Hybrid CTL*

Idea

» CTL* has only implicit paths and nodes
» Add ability to name nodes in our formulae

Example

We can get from a to b in two different ways:

El, EF({, EXF(bA |, O, E(-v2Uw3)))

Hybrid CTL*

Idea

» CTL* has only implicit paths and nodes
» Add ability to name nodes in our formulae

Example

We can get from a to b in two different ways:

El, EF({, EXF(bA |, O, E(-v2Uw3)))

Hybrid CTL*

Idea

» CTL* has only implicit paths and nodes
» Add ability to name nodes in our formulae

Example

We can get from a to b in two different ways:

El, EF({, EXF(bA |, O, E(-v2Uw3)))

Hybrid CTL*

Idea

» CTL* has only implicit paths and nodes
» Add ability to name nodes in our formulae

Example

We can get from a to b in two different ways:

El, EF({, EXF(bA |, O, E(-v2Uw3)))

Hybrid CTL*

Idea

» CTL* has only implicit paths and nodes
» Add ability to name nodes in our formulae

Example

vi 7 %)
— a b
i) i)
° °

We can get from a to b in two different ways:

El, EF({, EXF(bA |, O, E(-v2Uw3)))

Overview

Walk Logic

16/38

Walk Logic

Idea: extend first-order logic

> Add walks
» Add positions on walks

> Necessary operators to compare positions

Route planning
We want to travel from our office to a cafetaria (R) and from this
cafetaria get back to the office using a different route (S)
RISt F36,R3u°Fur°Fus®
(office(t1) A t1 < to A cafeteria(tp) A up < uz < up
Aup~t A~ AVER(< t3 < th = t3 4 13))

Definitions

Definition (Directed node-labeled graph)
A directed node-labeled graph is a triple G = (N, E, /):
> N is a finite set of nodes

» E C N x N is the set of edges
» | : N — 247 is a node-label function

Walk Logic

» Walk variables

» Position variables per walk variable

Atomic Formulae
a(t) Node referred to by position variable ¢ has labelling a
t1 ~ to | Position variables t1, t» refer to the same node
t1 < to | Position variable t; comes before t> in walk W
Position variables t; and t» must be of the same sort

©, 1 are formulae
=, V1 | Negation and disjunction
JW e Quantification over walks
ItV Quantification over positions on walks

Semantics: ‘walks'?

Definition
Infinite walk A finite or infinite sequence v; ... of nodes such that
(vi,vig1) € E foreach 1 < <|vy...]

Walk A nonempty finite sequence v; ... v, of nodes such
that (vj, vi41) € E foreach 1 <i<n

Trail A walk without edge repetition
Path A walk without node repetition

Semantics: ‘walks'?

Definition
Infinite walk A finite or infinite sequence v; ... of nodes such that
(vi,vig1) € E foreach 1 < <|vy...]

Walk A nonempty finite sequence v; ... v, of nodes such
that (vj, vi41) € E foreach 1 <i<n

Trail A walk without edge repetition
Path A walk without node repetition

» CTL* and Hybrid CTL*: primarily infinite walks
» CRPQs: primarily walks

Semantics: expressive power
Hierarchy of expressive power
Infinite walk A walk W is finite:
I -3uV t < u
Walk A walk is a trail (informally):
VIV (t~unt ~ o) = t=u
Trail A trail W is a path (informally):

ViYWt~ = t=u

Path Logic < Trail Logic < Walk Logic < Infinite Walk Logic

Walk-based Graph Properties

Example (Hamiltonian Path (in Path Logic))
IPYQVtRIuP (t ~ u)
Example (Eulerian Trail (in Trail Logic))
ITVQVERAuT (t ~ u) A (tp1 ~ uy1)
Example (Strongly Connected)

VPYQVtPYuQ3IRIVRIWR (v<wAt~vAU~wW)

22/38

Properties on undirected graphs

Theorem
Weakly Connected is not expressible on directed graphs

Proof.
ng «— N — N3 «— Ng — N5 «— Ng

All walks contain at most 2 nodes: reduce to first-order logic [

» Direction matters!

» On undirected graphs:

Weakly Connected same way as strongly connected
Planar Graph using Kuratowski's Theorem

Overview

Relations with FO and MSO

24/38

MSO(nodes, edges) and paths

Observations

» Path: sequence of connected edges
» No node repetition: nodes and positions coincide

» Node a before node b on path P if and only if
Node b is reachable from a using the edges in P

Theorem
Path Logic < MSO(nodes, edges)

Set-based Graph Properties

Theorem

Bipartite graph is not expressible on directed graphs

Lemma (Dénes Konig)

A graph is bipartite iff it does not contain an odd cycle

Proof.

np — N3 my — M3 — My

A/ \ \

mi «— Mg «— Mxg

All walks contain at most 3 nodes: reduce to first-order logic

» MSO(nodes) can express bipartite graph
» |s Walk Logic strictly subsumed by MSQO?

Eulerian Trail

Theorem

MSO(nodes, edges) cannot express Eulerian Trail

Lemma (well known result)

MSO cannot distinguish sets with i from sets with j elements

Proof.
For MSO: existence of Eulerian Trail in the graph

o — V2 — b o bm
: : — : :
: v : : :
ai Y a b

Reduces to sets A and B having the equal number of elements [

Relations with FO and MSO

» We have FO < Path Logic < MSO(nodes, edges)

» Trail Logic, Walk Logic, and Infinite Walk Logic are
incomparable with MSO(nodes) and MSO(nodes, edges)

Lemma (Courcelle and Engelfriet)

MSO(nodes) cannot express Hamiltonian Path

» Path Logic and MSO(nodes) are incomparable

Path Logic < Trail Logic < *Walk Logic =< Infinite Walk Logic

1The proof for Trail Logic < Walk Logic is omitted but is similar to the
proof of Path Logic < Trail Logic

Overview

Relations with CTL* and Hybrid CTL*

29/38

Review: Hybrid CTL*

Definition
Let a be an atomic proposition, x a node variable, ¢1 and @, node
formulas, 1 and 1, path formulas

Node formulas
pu=al|x| 1|1V erix 01| 0xp1|EY

Path formulas

Y= 1 |1 Vb | Xopr | 1 U

30/38

Translating Hybrid CTL* to Walk Logic

Idea

Node formulas Properties of single node:

translate to properties of single position
Hybrid extensions Named nodes:

translate to named position variables

Path formulas Properties on a single path with forward navigation:
translate to walk variable; keep track of current
position using position variables and <

Translating Hybrid CTL* to Walk Logic

Idea

Node formulas Properties of single node:

translate to properties of single position
Hybrid extensions Named nodes:

translate to named position variables

Path formulas Properties on a single path with forward navigation:
translate to walk variable; keep track of current
position using position variables and <

CTL* < Hybrid CTL* =< Infinite Walk Logic

Hybrid CTL* < Infinite Walk Logic?

Theorem
Hybrid CTL* < Infinite Walk Logic

Proof.

> CTL* < Infinite Walk Logic as CTL* is invariant under
bisimulation

» Hybrid CTL* < Infinite Walk Logic as Hybrid CTL* is
invariant under generated submodels

Hybrid CTL* < Infinite Walk Logic?

Theorem
Hybrid CTL* < Infinite Walk Logic

Proof.

> CTL* < Infinite Walk Logic as CTL* is invariant under
bisimulation

» Hybrid CTL* < Infinite Walk Logic as Hybrid CTL* is
invariant under generated submodels

CTL* < Hybrid CTL* < Infinite Walk Logic

Hybrid CTL* < Infinite Walk Logic?
Theorem
Hybrid CTL* < Infinite Walk Logic
Proof.

> CTL* < Infinite Walk Logic as CTL* is invariant under
bisimulation

» Hybrid CTL* < Infinite Walk Logic as Hybrid CTL* is
invariant under generated submodels

CTL* < Hybrid CTL* < Infinite Walk Logic

Walk Logic < Infinite Walk Logic

Overview

Conjunctive Regular Path Queries

33/38

CRPQs versus Walk Logics

Different languages!
Focus on path labelling versus focus on path-structure of graphs

» All CRPQs are incomparable with all Walk Logics.

CRPQs versus Walk Logics

Different languages!
Focus on path labelling versus focus on path-structure of graphs

» All CRPQs are incomparable with all Walk Logics.

» Similar semantically questions

» Similar proof techniques

Some results

» Hamiltonian path cannot be expressed

» Eulerian trail cannot be expressed

Some results

» Hamiltonian path cannot be expressed

» Eulerian trail cannot be expressed

Paths versus Walks

CRPQ with paths can express queries not expressible in the
strongest language with Walks!

Overview

Open Problems and Conclusion

36/38

Open Problems

» Walk Logic versus Infinite Walk Logic:
» Infinite walks are the standard in verification logics
» Can we express the verification logics in Walk Logic?
> Also interesting: finite CTLx versus infinite CTL*

» Complexity bounds on model checking for WL:

» WL model checking is decidable
» Current approach has horrible complexity

®

Conclusion

» General walk-based reasoning on graphs
> Relates to practical graph languages

» Framework for studying expressivity

	Graph Databases
	Motivation
	Walk Logic
	Relations with FO and MSO
	Relations with CTL* and Hybrid CTL*
	Conjunctive Regular Path Queries
	Open Problems and Conclusion

