
Walk Logic as a framework for path query
languages on graph databases

Jelle Hellings, Bart Kuijpers
Jan Van den Bussche, and Xiaowang Zhang

Hasselt University and transnational University of Limburg

19 March 2013

1 / 27



Overview

Introduction

Walk Logic

Expressive Power

Regular Walk Logic

Open Problems and Conclusion

2 / 27



Motivation

I Expressing graph-queries

I Properties of paths, walks, . . .

Route planning

We want to travel from our office to a cafetaria and from this
cafetaria get back to the office using a different route
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General logics

I First-order logic: limited to local reasoning
I Monadic second-order logic:

I Focus on sets: bipartite graph

∃S∃T (∀x (x ∈ S ⇐⇒ x 6∈ T ) ∧ ∀y edge(x , y) =⇒
((x ∈ S ∧ y ∈ T ) ∨ (y ∈ T ∧ x ∈ S)))

I Paths non-straightforward: y is reachable from x

∀S [(x ∈ S)∧∀u∀v (u ∈ S∧edge(u, v) =⇒ v ∈ S) =⇒ y ∈ S ]

I Nodes versus nodes and edges
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Specific logics

I Family of Conjunctive Regular Path Queries (CRPQs)
I Focus on labelling of paths (‘regular expression’)

Q(a, b) := aπb, (αβ + γδ)∗(π)

I Limited reasoning between paths (‘equal length’)

Q(π1, π2) := aπ1b ∧ aπ2b, [ αβ ]
∗

( π1
π2 )

I Family of verification logics (CTL∗ and hybrid extensions)
I Focus on behaviour single/independent paths

AF(produce U break ∨ no-resources)
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Idea: extend first-order logic

I Add walks

I Add positions on walks

I Necessary operators to compare positions

Route planning

We want to travel from our office to a cafetaria (W ) and from this
cafetaria get back to the office using a different route (W ′)

∃W∃W ′∃tW1 ∃tW2 ∃u1
W ′∃u2

W ′∃u3
W ′

(office(t1) ∧ t1 < t2 ∧ cafeteria(t2) ∧ u1 < u3 < u2

∧ u1 ∼ t2 ∧ u2 ∼ t1 ∧ ∀tW3 (t1 < t3 < t2 =⇒ t3 6∼ u3))
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Definitions

Definition (Directed node-labeled graph)

A directed node-labeled graph is a triple G = (N,E , l):

I N is a finite set of nodes

I E ⊆ N × N is the set of edges

I l : N → 2AP is a node-label function

Definition (Walk)

A walk in G is a finite nonempty sequence v1 . . . vn of nodes such
that (vi , vi+1) ∈ E for each 1 ≤ i < n

Definition (Path)

A path in G is a walk without node repetition
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Walk Logic

I Quantification over walks and positions on walks

I Atomic formulae: properties on positions

a(t) Node referred to by position variable t has labelling a
t1 ∼ t2 Position variables t1, t2 refer to the same node
t1 < t2 Position variable t1 comes before t2 in walk W

Position variables t1 and t2 must be of the same sort

I Logical connectives

I Optionally: syntactic sugar (quantification over nodes, =, . . . )
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Path logic: Walk Logic with path-semantics

I Paths are useful themselves (Hamiltonian path):

∃P∀Q∀tQ∃uP (t ∼ u)

I Walk logic can express walk P is a path:

isPath(P) ≡ ∀tP∀uP (tP ∼ uP) =⇒ (tP = uP)

I Set of edges can describe a path
MSO over nodes and edges subsumes Path Logic

I Can we also express Walk Logic in Path Logic or MSO?
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Walk-based Graph Properties - 1

Strongly Connected

∀P∀Q∀tP∀uQ∃R∃vR∃wR (v < w ∧ t ∼ v ∧ u ∼ w)

Hamiltonian Path (in Path Logic)

∃P∀Q∀tQ∃uP (t ∼ u)

Eulerian Trail

∃W (W is a trail ∧ every edge is part of W )
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Walk-based Graph Properties - 2

Theorem

Weakly Connected is not expressible on directed graphs

Proof.

n1 n2 n3 n4 n5 n6

All walks contain at most 2 nodes: reduce to first-order logic

I Direction matters!

I On undirected graphs:

Weakly Connected same way as strongly connected
Planar Graph using Kuratowski’s Theorem
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Set-based Graph Properties

Theorem

Bipartite graph is not expressible on directed graphs

Lemma (Dénes Kőnig)

A graph is bipartite iff it does not contain an odd cycle

Proof.

n1

n2 n3

m1

m2 m3 m4

m5m6

All walks contain at most 3 nodes: reduce to first-order logic

I MSO can express bipartite graph

I Is Walk Logic strictly subsumed by MSO?
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Open questions

I Can we express Walk Logic in Path Logic?

I Can we express Walk Logic in MSO?

I Is Walk Logic strictly subsumed by MSO?
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Eulerian Trail

Theorem

MSO(nodes, edges) and Path Logic cannot express Eulerian Trail

Lemma (well known result)

MSO cannot distinguish sets with i from sets with j elements

Proof.

For MSO: existence of Eulerian Trail in the graph

a1

...

an

v1

v2

b1

...

bm

=⇒

a1

...

an

b1

...

bm

Reduces to sets A and B having the equal number of elements
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Relations with FO and MSO

Lemma (Courcelle and Engelfriet)

MSO(nodes) cannot express Hamiltonian Path

I FO and Path Logic are strictly subsumed by Walk Logic

I MSO(nodes) incomparable with Path Logic and Walk Logic

I MSO(nodes, edges) strictly subsumes Path Logic

I MSO(nodes, edges) incomparable with Walk Logic
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Regular walk logic

I Conjunctive Regular Path Queries (CRPQs)
Regular expressions over single walk

I Extended Conjunctive Regular Path Queries (ECRPQs)
Regular expressions over n-tuples of walks

I (Extended) Regular Walk Logic ((E)RWL)1:
Generalize (E)CRPQs by adding Boolean connectives

∃π1∃π2∃v1∃v2 (v1π1v2 ∧ v1π2v2 ∧ [ αβ ]
∗

( π1
π2 ))

I Purpose: study open problems for (E)CRPQs

1In the literature this variant is also called ECRPQ¬
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ECRPQs with path-semantics

I Standard (E)CRPQs work with walk semantics

I Efficient query evaluations

I Under path semantics:
No efficient query evaluation algorithm is known

I SPARQL 1.1: property paths had path-based semantic

I Regular Path Logic (RPL) is RWL with path-based semantic
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Hamiltonian path - 1

Theorem

ERWL cannot express Hamiltonian Path

Definition (Kn × Cm-graphs)

a1

...

an

b1

b2
.

bm

I n point-nodes, m nodes on an undirected cycle

I Undirected edges between every point-node and cycle-node

Lemma

∀ length l > 2 and nodes v1, v2: there is a walk v1πv2 of length l
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Hamiltonian path - 2

Theorem (repeated)

ERWL cannot express Hamiltonian Path

Lemma (repeated)

∀ length l > 2 and nodes v1, v2: there is a walk v1πv2 of length l

Corollary

Using a unary alphabet for the labelling:

I Regular expressions reduce to reachability in Kn × Cm-graphs

I ERWL on Kn × Cm-graphs reduces to FO-logic

Proof (de Rougemont).

FO logic on Kn ×Cm graphs cannot express Hamiltonian Path.
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RWL and RPL

Theorem

ERPL is not subsumed by ERWL

Proof.

I ERWL cannot distinguish Kn × Cm- from Kn′ × Cm′-graphs

I ERPL can express ‘Longest path has even length’

∃π1((αα)∗π1 ∧ ¬∃π2 [ αα ]∗ [⊥α ]
+

(π1, π2))
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Additional results

I Eulerian Path not expressible in RWL or RPL

I CRPQ and star-free ECRPQ are incomparable with WL

I Path-based CRPQ is not subsumed by ECRPQ
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Open Problems

I Relations with verification logic:
I Infinite walks are the standard in verification logics
I Can we express the verification logics in Walk Logic?
I Walk Logic with infinite walks?

I Complexity bounds on model checking for WL:
I WL model checking is decidable
I Current approach has horrible complexity
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Conclusion

I General walk-based reasoning on graphs

I Relates to practical graph languages

I Framework for studying expressivity

27 / 27


	Introduction
	Walk Logic
	Expressive Power
	Regular Walk Logic
	Open Problems and Conclusion

