BRIEF ANNOUNCEMENT:
Revisiting Consensus Protocols through
Wait-Free Parallelization

Suyash Gupta Jelle Hellings ~Mohammad Sadoghi

Exploratory Systems Lab,
Department of Computer Science,
University of California, Davis, CA, USA

UNIVERSITY OF CALIFORNIA



Vision: resilient data processing

Goal

Harden database systems: crashes and malicious attacks.

Solution
Use Byzantine fault-tolerant replication in database systems.

Crashed

v

¢ f
&

&= & &
& € S

Malicious

@
(@

High-performance BFT: via primary-backup consensus protocols.



The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

A

Throughput (txn/s)

A\ Network capacity

CPU capacity

Y

Time (s)



The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Crash

ANetwork capacity,

CPU capacity

Throughput (txn/s)

Detection

Y

: Time (s)



The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Throughput (txn/s)

A

Crash

\ Network capacity,

Replacement

CPU capacity

Detection

A

Recovery

Malicious

Throttling
——

Time (s)



Solution: parallelize consensus

Basic idea

Run m > finstances of a BFT protocol P in parallel!

Parallel
consensus decisions

A

Collect

A

I
Start Iz
Im

Challenges

> Dealing with faulty instances.

Order Execute

CR;

requests requests

CR;

— >e————>e———>eEnd

CRm

» Eliminate influence of faulty instances on other instances.

» New attack vectors due to parallelization?



Core techniques employed

> Consensus does not need coordination!
Only execution needs coordination between instances.

» Order requests based on the decided requests.
Not predictable, very hard to influence.

» Primary replacement at instance level.
Only affects failed instances.

> Clients assigned to instances to prevent duplication.

Theorem (Wait-free parallelization of consensus)

Non-faulty instances can continuously order requests independently.



Conclusion

More information
https://jhellings.nl

Paper: https://doi.org/10.4230/LIPIcs.DISC.2019.44.
Technical Report: https://arxiv.org/abs/1908.01458.



