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Vision: resilient data processing

Goal

Harden database systems: crashes and malicious attacks.

Solution
Use Byzantine fault-tolerant replication in database systems.
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High-performance BFT: via primary-backup consensus protocols.



The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!
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Solution: parallelize consensus

Basic idea

Run m > finstances of a BFT protocol P in parallel!
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Challenges

> Dealing with faulty instances.
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» Eliminate influence of faulty instances on other instances.

» New attack vectors due to parallelization?



Core techniques employed

> Consensus does not need coordination!
Only execution needs coordination between instances.

» Order requests based on the decided requests.
Not predictable, very hard to influence.

» Primary replacement at instance level.
Only affects failed instances.

> Clients assigned to instances to prevent duplication.

Theorem (Wait-free parallelization of consensus)

Non-faulty instances can continuously order requests independently.



Conclusion

More information
https://jhellings.nl

Paper: https://doi.org/10.4230/LIPIcs.DISC.2019.44.
Technical Report: https://arxiv.org/abs/1908.01458.



