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Vision: resilient data processing

Goal

Harden database systems: crashes and malicious a�acks.

Solution

Use Byzantine fault-tolerant replication in database systems.
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High-performance BFT: via primary-backup consensus protocols.
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The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Network capacity

Time (s)

T
h

r
o

u
g
h

p
u

t
(
t
x
n
/
s
)

CPU capacity

Crash

Detection

Replacement

Recovery

Malicious

Thro�ling



3/6

The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Network capacity

Time (s)

T
h

r
o

u
g
h

p
u

t
(
t
x
n
/
s
)

CPU capacity

Crash

Detection

Replacement

Recovery

Malicious

Thro�ling



3/6

The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Network capacity

Time (s)

T
h

r
o

u
g
h

p
u

t
(
t
x
n
/
s
)

CPU capacity

Crash

Detection

Replacement

Recovery

Malicious

Thro�ling



4/6

Solution: parallelize consensus

Basic idea

Run m > f instances of a BFT protocol P in parallel!
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Challenges

I Dealing with faulty instances.

I Eliminate influence of faulty instances on other instances.

I New a�ack vectors due to parallelization?
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Core techniques employed

I Consensus does not need coordination!

Only execution needs coordination between instances.
I Order requests based on the decided requests.

Not predictable, very hard to influence.

I Primary replacement at instance level.

Only a�ects failed instances.

I Clients assigned to instances to prevent duplication.

Theorem (Wait-free parallelization of consensus)

Non-faulty instances can continuously order requests independently.
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Conclusion

More information

https://jhellings.nl

Paper: https://doi.org/10.4230/LIPIcs.DISC.2019.44.

Technical Report: https://arxiv.org/abs/1908.01458.


