
1/6

Brief Announcement:

Revisiting Consensus Protocols through

Wait-Free Parallelization

Suyash Gupta Jelle Hellings Mohammad Sadoghi

Exploratory Systems Lab,

Department of Computer Science,

University of California, Davis, CA, USA



2/6

Vision: resilient data processing

Goal

Harden database systems: crashes and malicious a�acks.

Solution

Use Byzantine fault-tolerant replication in database systems.

2
2 2

2

2

2

2

2
ë

Crashed

Malicious

High-performance BFT: via primary-backup consensus protocols.



3/6

The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Network capacity

Time (s)

T
h

r
o

u
g
h

p
u

t
(
t
x
n
/
s
)

CPU capacity

Crash

Detection

Replacement

Recovery

Malicious

Thro�ling



3/6

The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Network capacity

Time (s)

T
h

r
o

u
g
h

p
u

t
(
t
x
n
/
s
)

CPU capacity

Crash

Detection

Replacement

Recovery

Malicious

Thro�ling



3/6

The need for wait-free consensus

Primary-backup consensus protocols have weaknesses!

Network capacity

Time (s)

T
h

r
o

u
g
h

p
u

t
(
t
x
n
/
s
)

CPU capacity

Crash

Detection

Replacement

Recovery

Malicious

Thro�ling



4/6

Solution: parallelize consensus

Basic idea

Run m > f instances of a BFT protocol P in parallel!

Start

Parallel

consensus

Collect

decisions

I1

I2

...
Im

CR1

CR2

...
CRm

Order

requests

Execute

requests

End

Challenges

I Dealing with faulty instances.

I Eliminate influence of faulty instances on other instances.

I New a�ack vectors due to parallelization?



5/6

Core techniques employed

I Consensus does not need coordination!

Only execution needs coordination between instances.
I Order requests based on the decided requests.

Not predictable, very hard to influence.

I Primary replacement at instance level.

Only a�ects failed instances.

I Clients assigned to instances to prevent duplication.

Theorem (Wait-free parallelization of consensus)

Non-faulty instances can continuously order requests independently.



6/6

Conclusion

More information

https://jhellings.nl

Paper: https://doi.org/10.4230/LIPIcs.DISC.2019.44.

Technical Report: https://arxiv.org/abs/1908.01458.


