
BRIEF ANNOUNCEMENT:
The Fault-Tolerant Cluster-Sending Problem

Jelle Hellings Mohammad Sadoghi

Exploratory Systems Lab,
Department of Computer Science,
University of California, Davis, CA, USA

Vision: resilient high-performance data processing

Requirement

Fault-tolerant communication between clusters!

The need for cluster-sending

Definition

The *cluster-sending problem* is the problem of sending a value v from C_1 to C_2 such that:

1. all non-faulty replicas in C_2 *receive* the value v ;
2. only if all non-faulty replicas in C_1 *agree* upon sending the value v to C_2 will non-faulty replicas in C_2 receive v ; and
3. all non-faulty replicas in C_1 can *confirm* that the value v was received.

Solution (crash failures)

Pair-wise broadcasting with $(f_1 + 1)(f_2 + 1)$ messages.

Lower bounds for cluster-sending: Example

$$n_1 = 15$$

$$n_2 = 5$$

$$f_1 = 7$$

$$f_2 = 2$$

Claim (crash failures)

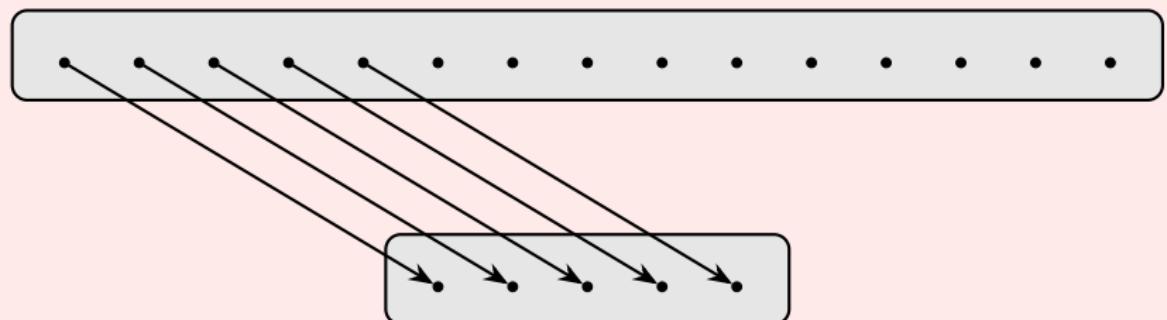
Any correct protocol needs to send at least 14 messages.

• • • • • • • • • • • • • • • •

• • • • •

Lower bounds for cluster-sending: Example

$$n_1 = 15$$


$$n_2 = 5$$

$$f_1 = 7$$

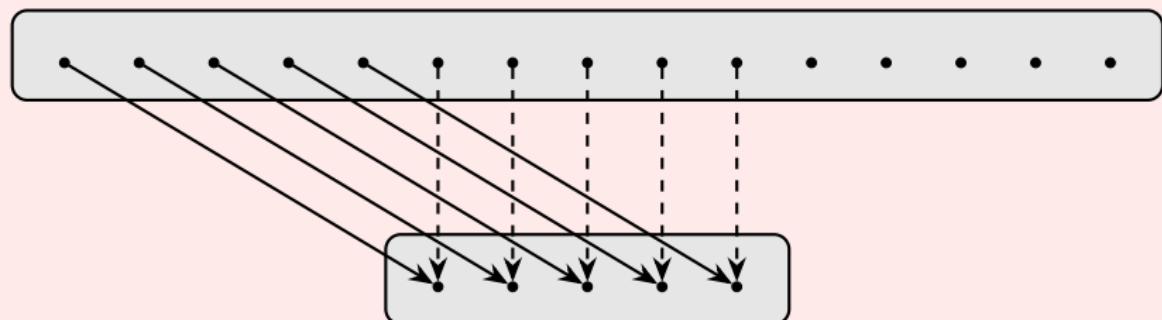
$$f_2 = 2$$

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

Lower bounds for cluster-sending: Example

$$n_1 = 15$$


$$n_2 = 5$$

$$f_1 = 7$$

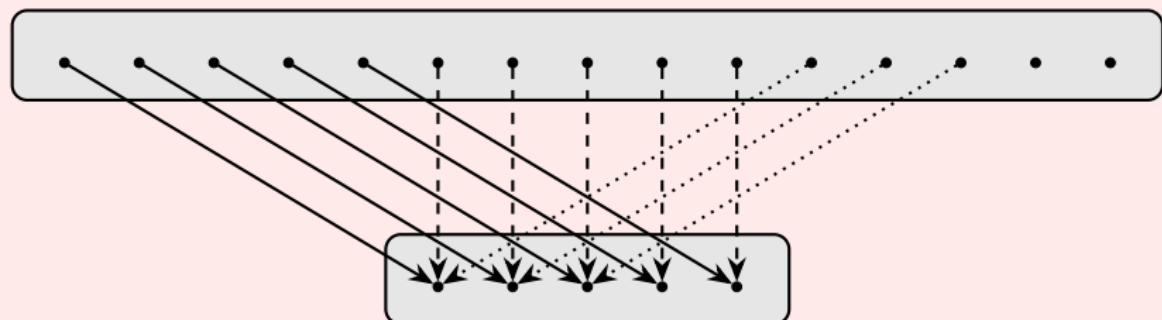
$$f_2 = 2$$

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

Lower bounds for cluster-sending: Example

$$n_1 = 15$$


$$f_1 = 7$$

$$n_2 = 5$$

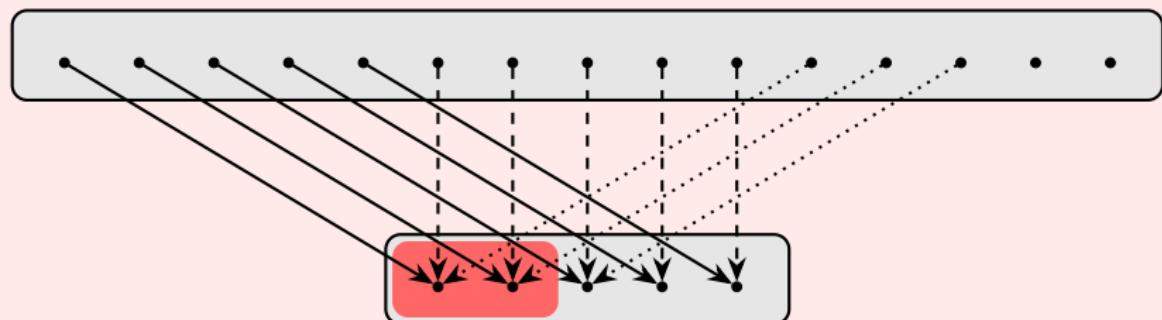
$$f_2 = 2$$

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

Lower bounds for cluster-sending: Example

$$n_1 = 15$$


$$n_2 = 5$$

$$f_1 = 7$$

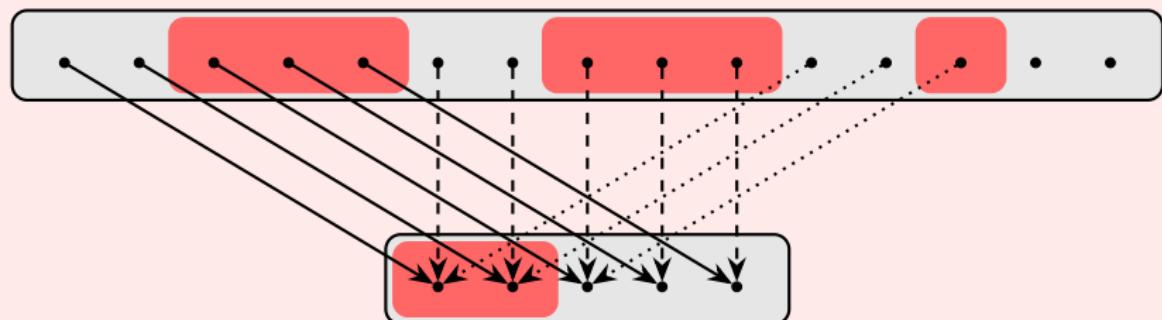
$$f_2 = 2$$

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

Lower bounds for cluster-sending: Example

$$n_1 = 15$$


$$n_2 = 5$$

$$f_1 = 7$$

$$f_2 = 2$$

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

Lower bounds for cluster-sending: Results

Theorem

Assume $\mathbf{n}_1 \geq \mathbf{n}_2$ and let

$$q = (\mathbf{f}_1 + 1) \text{ div } \mathbf{n}\mathbf{f}_2;$$

$$r = (\mathbf{f}_1 + 1) \text{ mod } \mathbf{n}\mathbf{f}_2;$$

$$\sigma = q\mathbf{n}_2 + r + \mathbf{f}_2 \operatorname{sgn} r.$$

We need to exchange at least σ messages to do cluster-sending.

- ▶ Similar results for $\mathbf{n}_1 \leq \mathbf{n}_2$.
- ▶ Byzantine failures: similar lower bounds on signatures.

An optimal algorithm

Protocol for the sending cluster C_1 , $\mathbf{n}_1 \geq \mathbf{n}_2$, $\mathbf{n}_1 \geq \sigma$:

- 1: Choose replicas $\mathcal{P} \subseteq C_1$ with $\mathbf{n}_{\mathcal{P}} = \sigma$.
- 2: Choose a \mathbf{n}_2 -partition $\text{partition}(\mathcal{P})$ of \mathcal{P} .
- 3: **for** $P \in \text{partition}(\mathcal{P})$ **do**
- 4: Choose replicas $Q \subseteq C_2$ with $\mathbf{n}_Q = \mathbf{n}_P$.
- 5: Choose a bijection $b : P \rightarrow Q$.
- 6: **for** $r_1 \in P$ **do**
- 7: Send v from r_1 to $b(r_1)$.

- ▶ Crash failures: $\mathbf{n}_1 > 3\mathbf{f}_1$ and $\mathbf{n}_2 > 3\mathbf{f}_2$.
- ▶ Byzantine failures:
 - ▶ using signatures: $\mathbf{n}_1 > 4\mathbf{f}_1$ and $\mathbf{n}_2 > 4\mathbf{f}_2$;
 - ▶ using threshold signatures: $\mathbf{n}_1 > 3\mathbf{f}_1$ and $\mathbf{n}_2 > 3\mathbf{f}_2$.

Conclusion

More information

<https://jhellings.nl>

Paper: <https://doi.org/10.4230/LIPIcs.DISC.2019.45>

Technical Report: <https://arxiv.org/abs/1908.01455>