A Note on State-Machine Frameworks for
Property-Based Testing

Jan Midtgaard
Version 3.1, February 28, 2020

1 Introduction

State-machine frameworks have proven their worth after property-based testing
have located subtle bugs in everything from the underlying AUTOSAR compo-
nents of Volvo cars to Google’s LevelDB library. These two case studies were
carried out with the commercial Erlang QuickCheck state-machine framework
from Quviq, and the API design of this framework has subsequently been mim-
icked in the open source frameworks Proper and Triq.

In this note we reconstruct a typed state-machine framework for OCaml
based on the QCheck library. In doing so, we illustrate a number concepts
common to all such frameworks: state modeling, commands, interpreting com-
mands, preconditions, and agreement checking. As such, the note is as relevant
to understand state-machine frameworks in Erlang, Haskell, Python, or C++.

2 A direct example

As an example, consider the builtin hashtable implementation from the OCaml
standard library. We recall a selection of the hashtable API in Fig. 1. The oper-
ation create lets us create a hashtable, whereas add and remove lets us insert
and delete key-value entries to and from an existing hashtable. We consider two
forms of hashtable queries: find looks up the value for a given key whereas mem
simply asks whether there exists an entry with a given key.

val create : ?random:bool -> int -> (’a, ’'b) Hashtbl.t
val add : ("a, ’"b) Hashtbl.t -> 'a -> "b -> unit

val remove : (’'a, ’'b) Hashtbl.t -> ’a -> unit

val find : ("a, ’"b) Hashtbl.t -> 'a -> 'Db

val mem : ("a, ’'b) Hashtbl.t -> ’'a -> bool

Figure 1: Selected operations from the Hashtbl API

cmd: add "a" 4 add "z" 0 mem "b" remove "a" find "z"

impl: create 4)' . H . H . 4)' . H .
model: 0 e — LA L (a0 —— (2, 0)

Figure 2: Checking agreement of a list of commands, diagrammatically

If we are to test this imperative API using property-based testing, one option
is to generate an arbitrary sequence of (symbolic) hashtable operations and
ensure that the outcome of each operation is as expected. A common method to
phrase expectation in this context is by using a model: an idealized (functional)
specification of the imperative API.

Graphically, we can visualize our approach as in Fig. 2, where the top row
represents an arbitrary sequence of commands, the middle row represents the
operations over the system under test (as a black box), and the bottom row
represents the operations over the model. Side-effecting operations (add and
remove with return type unit) are interpreted over both rows without a com-
parison, whereas operations with an actual output (mem and £ind) cause us to
compare it to the model’s output.

2.1 Commands and command generators

The hashtables from OCaml’s standard library are polymorphic: they work for
multiple key types ’a and value types 'b. To test them however, we need to
choose concrete key and value types. Somewhat arbitrarily, we choose string
as our key type and int as our value type. With this type choice in mind, a
symbolic hashtable operation can now be represented as an algebraic datatype:

type cmd =
| Add of string *» int
| Remove of string
| Find of string
| Mem of string [@Q@deriving show { with_path = false }]

Here we utilize a preprocessor (ppx-deriving) to automatically derive a printer
(show_cmd : cmd —-> string) from the type definition.

Based on the data type definition we can now write a straight-forward gen-
erator of commands. We phrase the generator in terms of a string generator
str_gen that chooses between generating a short string and an arbitrary one:

(» gen_cmd : cmd Gen.t x)
let gen_cmd =
let str_gen = Gen.oneof [Gen.small_string;
Gen.string] in
Gen.oneof
[Gen.map2 (fun k v -> Add (k,v)) str_gen Gen.small_nat;

Gen.map (fun k -> Remove k) str_gen;
Gen.map (fun k -> Find k) str_gen;
Gen.map (fun k -> Mem k) str_gen;]

When combined with the printer show_cmd we can now form a full generator
of arbitrary commands, and subsequently lift it to a full generator of arbitrary
command lists:

(» arb_cmd : cmd QCheck.arbitrary x)
let arb_cmd = make ~print:show_cmd gen_cmd

(x arb_cmds : cmd list QCheck.arbitrary =)
let arb_cmds = list arb_cmd

With commands and command generation in place, we proceed to our model.

2.2 Model and model interpretation

We can model a hashtable with string keys and integer values by an association
list of string * int pairs:

type state = (string x int) list

This type can naturally model the internal state of a hashtable, in the form of
a collection of string keys and associated int values. Based on this model, it is
now straight-forward to write an interpreter:

(* next_state : cmd -> state —-> state)
let next_state ¢ s = match c with
| Add (k,v) —> (k,v)::s
| Remove k —> List.remove_assoc k s
| Find _
| Mem -> s

Interpreting an Add command adds the key-value pair to the association list,
whereas Remove deletes the first occurrence of key k using List.remove_assoc
from the standard library. This model faithfully models how adding an entry
with an already existing key shadows (but does not overwrite) any previous
entries. In the Find and Mem cases the state is returned unmodified since these
two operations have no effects on the hashtable’s internal state.

2.3 Interpreting commands and verifying the output

We still need to interpret the symbolic commands over the actual system under
test, namely the hashtables from OCaml’s standard library and to verify that
any output returned is as expected. We perform these two tasks with a function

run_cmd:

(+ run_cmd : cmd -> state -> (string, int) Hashtbl.t -> bool x)
let run_cmd ¢ s h = match c with

| Add (k,v) —> Hashtbl.add h k v; true

| Remove k —-> Hashtbl.remove h k; true

| Find k >
List.assoc_opt k s = (try Some (Hashtbl.find h k)
with Not_found -> None)
| Mem k -> List.mem_assoc k s = Hashtbl.mem h k

Since Add and Remove have return type unit, there is no output to verify and
we therefore simply return true. In the Find and Mem cases, we verify that
the output of the hashtable operations agree with the corresponding operations
over the model’s association list. We do so by relying on two functions from the
standard library’s List module:
List.assoc_opt : "a -> (a = ’"b) list -> ’"b option
List.mem_assoc : "a -> ('a * ’'b) list -> bool

2.4 Combining all the pieces

Based on the above, we can now write a recursive agreement checker that walks
the list of symbolic commands:

(+ 1interp_agree : state -> (string, int) Hashtbl.t -> cmd list -> bool x)
let rec interp_agree s h cs = match cs with
| [] —-> true
| c:i:cs —>
let b = run_cmd ¢ s h in
let s’ = next_state ¢ s in

b && interp_agree s’ h cs

The function interprets a command first over the hashtable and then over the
model. We remark that the recursion stops early in case of a disagreement,
thanks to short-circuit Boolean evaluation of the conjunction ss.

Finally we can formulate the actual agreement test:

(x agree_test : QCheck.Test.t)
let agree_test =

Test.make ~name:"Hashtbl-model_agreement" ~count:500
arb_cmds
(fun cs —-> interp_agree [] (Hashtbl.create ~random:false 42) cs)

The property tests agreement between the model and the hashtable, starting
from an empty association list and a newly created hashtable. With optional

parameters we furthermore specify a title for the test and a number of runs
(500). We can now run the test:

QCheck_runner.run_tests ~verbose:true [agree_test]
which gives rise to the following output:

random seed: 106718569
generated error fail pass / total time test name
V] 500 0 0 500 / 500 1.9s Hashtbl-model agreement

success (ran 1 tests)

2.5 Interlude: Fault injection

When run, the property-based test suite finishes without errors after ensuring
agreement over 500 arbitrary command sequences. How can we be sure that
the test suite works as expected?

One way to “test the tester” is by fault injection, i.e., introducing a deliberate
error to check whether it is caught by our test suite. Since there are several pieces
of software in play this could be either (1) an error in the model or (2) an error
in the hashtable implementation.

Suppose we change run_cmd as follows:

(run_cmd : cmd —> state -> (string, int) Hashtbl.t —-> bool x)
let run_cmd ¢ s h = match ¢ with
| Add (k,v) —>
if String.length k <= 2
then Hashtbl.add h k v
else Hashtbl.add h k (v+1);
true
(* remaining cases left unmodified «)

This corresponds to injecting an error in the hashtable implementation, causing
it to insert the value v+1 rather than v when the key’s string length is greater
than 2.

Somewhat surprisingly, after recompiling and rerunning our test suite, it
does not appear to catch the injected error:

random seed: 326199985
generated error fail pass / total time test name
[v1 500 0 0 500 / 500 1.9s Hashtbl-model agreement

success (ran 1 tests)

Why is this so? We realize that our injected error would only be caught by the
model-based tests, if we generate a list of commands that first adds a key, e.g.,
"abc" with some value, e.g., 41, and later try to look up the very same key with

find "abc".! Our first version simply leaves it up to the generator to produce
such a command list, which unfortunately has a relatively low probability.

2.6 Revision: State-dependent key generation

Ideally, we would like to generate add, remove, find, and mem commands of
existing keys with some reasonable probability, similar to how one would typ-
ically hand write unit tests for such cases. One way to achieve this goal is to
take the model’s state into consideration, in effect implementing state-dependent
command generation.

Suppose we provide our generator of single commands with the model’s state
as a parameter, then we can choose between either (1) generating an existing key
from the hashtable or (2) generating an arbitrary key with the string generator.
The following implementation does so, by collecting the keys of the model and
choosing among them with probability %

(x gen_cmd : state —> cmd Gen.t x)
let gen_cmd s =
let str_gen
if s = []
then Gen.oneof [Gen.small_string;
Gen.string]

else
let keys = List.map fst s in
Gen.oneof [Gen.oneofl keys;
Gen.small_string;
Gen.string] in
Gen.oneof
[Gen.map2 (fun k v -> Add (k,v)) str_gen Gen.small_nat;

Gen.map (fun k -> Remove k) str_gen;
Gen.map (fun k -> Find k) str_gen;
Gen.map (fun k -> Mem k) str_gen;]

How can we now lift gen_cmd to generate command lists in a state-dependent
manner? To do so, we will utilize the infix operator >>= from QCheck’s Gen
module:

val (>>=) : 'a Gen.t => ("a -> 'b Gen.t) -> "b Gen.t

This infix operation takes two arguments: a (pure) generator and a func-
tion, which is applied to the generated value, similar to a callback function
in JavaScript. For example, we can write a generator of integer pairs, where the
first component is less than the second:

let my_pair_gen =
let open Gen in
small _nat >>= fun i -> pair (int_bound i) (return i)

Imem "abc" or remove "abc" would not cause disagreement with the model as these
operations do not inspect the corresponding value.

An inspection of my_pair_gen’s output indicates that it works as intended:

Gen.generate ~n:4 my_pair_gen;;
- : (int * int) 1list = [(2, 3); (48, 518); (53, 87); (0, 4)]

We can utilize our newly discovered operation to express a fueled, state-
dependent command list generator:

(gen_cmds : state —-> int -> cmd list QCheck.Gen.t x)
let rec gen_cmds s fuel =

let open Gen in

if fuel = 0

then Gen.return []

else

gen_cmd s >>= fun c —>
(gen_cmds (next_state ¢ s) (fuel-1)) >>= fun cs —>
return (c::cs)

When we run out of fuel, we simply generate the empty command list. When
there is still fuel in the tank, we first generate a single command using gen_cmd
and bind it to the parameter c. We subsequently generate the tail of the com-
mand list by a recursive call from the state that c takes us to and bind the
generated tail to the parameter cs. Finally we glue ¢ in front of cs and return
the result as a constant.

It is now straightforward to construct a full generator, by providing a printer
and a (list) shrinker and initializing the (pure) generator with the empty asso-
ciation list:

(x arb_cmds : cmd list QCheck.arbitrary =)

let arb_cmds =
make ~print: (Print.list show_cmd) ~shrink:Shrink.list
(Gen.sized (gen_cmds [1]))

We can now check that our injected error is caught as expected:

random seed: 136017840

generated error fail pass / total time test name
[X] 6 0 1 5/ 500 0.0s Hashtbl-model agreement
——— Failure —————————————

Test Hashtbl-model agreement 2 failed (10 shrink steps):

[(Add ("7~\228\203P", 5)); (Find "~\228\203P")]

The reported counterexample is minimal in that it contains only two commands:
an add command followed by a find command. The string key is small (4
characters) but not minimal, as the minimal key length to trigger our injected
error is 3 characters. Note that QCheck has not shrunk the individual list
elements (the commands) since we have not provided a shrinker for them. As
such it has only shrunk the list size.

3 Extrapolating from the direct example

In summary, we have combined three types:
e a type of commands
e a system under test (hashtables)
e a model of the system’s state (association lists)
with operations for
e interpreting commands over the model
e interpreting commands over the system under test and assuring agreement
e ensuring agreement over a list of commands

In addition we have realized the benefit of state-dependent command generation.
Based on this realization, we consider a common module signature (interface)
for phrasing such state-machine tests:

module type StmSpec =
sig

type cmd

type state

type sut

val arb_cmd : state -> cmd arbitrary

val init_state : state
val next_state : cmd -> state —-> state

val init_sut : unit -> sut
val cleanup : sut —-> unit
val run_cmd : cmd —> state -> sut -> bool

val precond : cmd -> state -> bool
end

The three types cmd, state, sut are as expected: They represent the type of
commands, the type of the model’s state, and the type of the system under test,
respectively. The operation arb_cmd is a (full) command generator. It accepts
a state parameter to enable state-dependent cmd generation. It is furthermore
phrased as a full generator, to allow an optional cmd printer and shrinker to be
provided.

The init_state and next_state represents the model in the form of its
initial state and an operation for interpreting a command over the model, re-
spectively. Finally there are three operations concerned with the system under
test (abbreviated sut): init_sut for initializing it, run_cmd for interpreting a
command, and cleanup for resetting the system under test.

As an additional operation, the signature requires precond for expressing
preconditions for a command. This is useful, e.g., to prevent the command list
shrinker from breaking invariants when minimizing counterexamples as we shall
see shortly.

The state-machine framework is formulated as a functor QCSTM.Make. When
QCSTM.Make is passed a module satisfying the above signature in return it pro-
duces a module with the following signature:

sig
(x some entries omitted =)
val arb_cmds : Spec.state —-> Spec.cmd list arbitrary
val interp_agree : Spec.state —-> Spec.sut -> Spec.cmd list -> bool
val agree_test : ?count:int -> name:string -> Test.t
end

Note how arb_cmds represents a state-dependent command list generator and
how interp_agree represents a recursive agreement checker. The operation
agree_test lets us easily build an agreement test.

For example, we can instantiate the ocsTM framework to test OCaml’s
hashtables by creating a module HConf with the required signature and passing
it to QcSTM.Make as illustrated in Fig. 3. After binding the resulting module
to the name HT, we can run the QCheck test HT.agree_test as desired. Com-
pared to writing a model out explicitly, a framework saves us from repeatedly
writing a recursive agreement checker and a dependent command list generator.

4 Another example: Queues

As a second example, consider the selection of the standard library’s gueue API
in Fig. 4. The create operation lets us construct a new queue, push adds an
element to the back, pop removes the front element, whereas top reveals the
front element without affecting the underlying queue. Both the pop and top
operations raise an exception when called with an empty queue:

Queue.top (Queue.create ());;
Exception: Stdlib.Queue.Empty.

As such it is a precondition for pop and top that their Queue argument is non-
empty. This means we have to be careful if we wish to generate and test only
well-formed sequences of Queue operations.

4.1 Modeling queues

We can easily model a queue as a list: the top of the queue is the list’s left
end, the empty list represents the empty queue, and we push an element by
appending it on the right. If we fix the type of queue elements to int, the three
types for QCSTM are in place:

type state = int list
type sut = int Queue.t

open Q

module
struct
type
type
type

I

I

I

I
(*

let
le

Ge

let
let
let

let
end

Check

HConf =

state = (string *» int) list

sut = (string, int) Hashtbl.t
cmd =

Add of string x int

Remove of string

Find of string

Mem of string [@@deriving show { with_path = false }]

gen_cmd : state —-> cmd Gen.t x)
gen_cmd s =
t str_gen =
if s = []
then Gen.oneof [Gen.small_string;
Gen.string]
else
let keys = List.map fst s in
Gen.oneof [Gen.oneofl keys;
Gen.small_string;
Gen.string] in

n.oneof
[Gen.map2 (fun k v -> Add (k,v)) str_gen Gen.small_nat;
Gen.map (fun k -> Remove k) str_gen;
Gen.map (fun k -> Find k) str_gen;
Gen.map (fun k -> Mem k) str_gen;]
arb_cmd s = QCheck.make ~print:show_cmd (gen_cmd s)
init_state = []

next_state ¢ s = match c with
Add (k,v) —-> (k,v)::s

Remove k -> List.remove_assoc k s

Find _

Mem _ -> s

init_sut () = Hashtbl.create ~random:false 42
cleanup _ = ()

run_cmd ¢ s h = match c with
Add (k,v) -> Hashtbl.add h k v; true

Remove k —-> Hashtbl.remove h k; true

Find k ->

List.assoc_opt k s = (try Some (Hashtbl.find h k)
with Not_found -> None)

Mem k —> List.mem_assoc k s = Hashtbl.mem h k

precond _ _ = true

module HT = QCSTM.Make (HConf)

rr

QCheck_runner.run_tests ~verbose:true

[HT.

agree_test ~count:500 ~name:"Hashtbl-model_agreement"]

Figure 3: A complete example of QCSTM.Make

10

val create : unit -> ’'a Queue.t

val pop : "a Queue.t -> 'a
val top : "a Queue.t -> 'a
val push : 'a -> "a Queue.t —-> unit

Figure 4: A selection of the Queue API operations

type cmd =
| Pop
| Top
| Push of int [@@deriving show { with_path = false }]

Based on these types we can now implement the model:

let init_state = []
let next_state ¢ s = match c with

| Pop —>
(match s with
I T[] > []
| _::8" —> s8')
| Top —> s

| Push i —-> s@[1i]

Initially queues are empty, modeled with the empty list []. The command inter-
preter next_state pattern matches on the given command. A push command
alters the state by inserting a new element last, at the right. Since top will
not alter the internal state, it just returns the state s unmodified. Finally pop
needs a non-empty queue state to remove from, so in case the state is empty []
the model remains unmodified.

4.2 Interpreting and verifying queue commands

We can also hook up with the system under test, the Queue module:

let init_sut () = Queue.create ()

let cleanup _ = ()

let run_cmd ¢ s g = match c with
| Pop —> (try Queue.pop g = List.hd s with _ -> false)
| Top —> (try Queue.top g = List.hd s with _ -> false)
| Push n —> Queue.push n g; true

The initializer init_sut simply creates a new queue. As old queues will be
garbage collected cleanup does not need to do anything. The command in-
terpreter run_cmd again pattern matches on the given command. Since push
commands have no return value, we simply perform the corresponding queue
command and return true to signal success. Both pop and top perform the
corresponding queue command and compare the result with the front of the list.
Should either of pop, top, or List.hd raise an exception, we return false to
signal a test failure.

11

pop
start — top, pop, push
push

Figure 5: A state machine corresponding to the Queue command generator

4.3 Generating queue commands

We can now phrase a state-dependent command generator:

let gen_cmd s =
let int_gen = Gen.small_nat in
if s = []
then Gen.map (fun i -> Push i) int_gen
else Gen.oneof
[Gen.return Pop;
Gen.return Top;
Gen.map (fun i -> Push 1) int_gen]

From an empty queue (s = []) we can only generate push commands, whereas
from a non-empty queue (s <> []) we can generate either pop, top, or push
commands. This generator corresponds to the state machine in Fig. 5: In
one configuration (s = [1) only push commands are allowed, whereas a second
configuration (s <> [1) allows all three kinds of commands. For each command
the state machine performs a transition from configuration to configuration. For
example, upon encountering a push command in the configuration s = [] the
state machine moves to the second configuration s <> []. On the other hand,
upon encountering a push command in the configuration s <> [] the state
machine stays in the configuration s <> [].

We can now lift the pure generator to a full, state-dependent generator by
supplying the derived printer:

let arb_cmd s = QCheck.make ~print:show_cmd (gen_cmd s)

4.4 Preconditions and their effect on shrinking
It only remains to provide a precondition function precond to instantiate the
QCSTM.Make functor. For now we simply provide a constant true function:

let precond _ _ = true

If we instantiate the QCSTM.Make functor with all the above and run the agree-
ment test agree_test of the resulting module, everything seems to work:

random seed: 79522449
generated error fail pass / total time test name

[vV] 10000 0 0 10000 / 10000 1.6s gqueue—-model agreement

success (ran 1 tests)

12

Now, let us inject an error, e.g., change the model to ignore insertions of 98:

let next_state ¢ s = match c with
| Pop —>
(match s with
[[> []
| _::8’ => s')
| Top —> s
| Push i -—>
if i<>98 then s@[i] else s (# an artificial fault in the model =«*)

Rerunning our tests, we encounter a problem:
random seed: 226748961

generated error fail pass / total time test name
[X] 9 0 1 8 / 10000 0.0s queue-model agreement
——— Failure ————————————— -

Test queue-model agreement failed (14 shrink steps):

[Pop]

QCheck generated 9 well-formed command lists, found a mismatch between the
implementation and the model on the ninth command list, and subsequently
shrunk it down to just one command: pop! Such a command list clearly cannot
result from our generator, but it arose from shrinking a well-formed command
list. The precond function guards against this very situation, by expressing
which commands are considered acceptable in a given state:

let precond ¢ s = match c with

| Pop > s<>[]
| Top -> s<>[]
| Push _ -> true

This states that pop and top are acceptable only when the queue is non-empty.
As such, it expresses the requirements from our state machine in Fig. 5 again.
With our refined precond function, we confirm that counterexamples are now
shrunk to well-formed command lists:

random seed: 508563729

generated error fail pass / total time test name
[X] 6 0 1 5 / 10000 0.0s queue-model agreement
-—— Failure ———————————————— -

Test queue-model agreement failed (10 shrink steps):

[(Push 98); (Push 8); Popl]

This is a minimal counterexample: we need two push commands and the first
to insert 98, in order to observe how the insertion has been ignored.

13

4.5 A consistency test

Since we now express command list requirements in two different ways: as a
dependent generator and as a precondition function, there is a natural risk of a
mismatch between the two. For this reason QcsTM offers a consistency test:

val consistency_test : ?count:int -> name:string -> Test.t

This test generates a number of command lists and checks that all contained
commands satisfy the precondition precond. It accepts an optional count pa-
rameter and a test name as a labeled parameter name.

We include the complete Queue example in Fig. 6.

5 Conclusion

We have written a model-based test of the hashtables from OCaml’s standard
library and generalized the example to a general approach for testing imperative
code. Secondly with a queue example we have illustrated how commands with
a precondition can be expressed. We thereby avoid generating, testing, and
shrinking to ill-formed command sequences.

The QCSTM framework can be installed via the OPAM package manager
with the following command: opam install gcstm
The source code and additional examples are available from the following url:

https://github.com/jmid/gcstm

14

open QCheck

module QConf =
struct
type state = int list
type sut = int Queue.t
type cmd =
| Pop (* may throw exception x)
| Top (* may throw exception x)
| Push of int [@@deriving show { with_path = false }]

let gen_cmd s =
let int_gen = Gen.small_nat in
if s = []
then Gen.map (fun i -> Push i) int_gen
else Gen.oneof
[Gen.return Pop;
Gen.return Top;
Gen.map (fun i -> Push i) int_gen]

let arb_cmd s = QCheck.make ~print:show_cmd (gen_cmd s)

let init_state = []
let next_state ¢ s = match c with

| Pop —>
(match s with
I [-> []
| _:t:s8” => s8")
| Top —-> s

| Push 1 —-> s@[1i]

let init_sut () = Queue.create ()

let cleanup _ = ()

let run_cmd ¢ s g = match c with
| Pop -> (try Queue.pop g = List.hd s with _ -> false)
| Top —-> (try Queue.top g = List.hd s with _ -> false)
| Push n -> begin Queue.push n g; true end

let precond c¢ s = match c with

| Pop > s<>[]
| Top -> s<>[]
| Push _ -> true

end

module QT = QCSTM.Make (QConf)

i

QCheck_runner.run_tests ~verbose:true
[QT.consistency_test ~count:10_000 ~name:"queue_gen-precond_agreement";
QT.agree_test ~count:10_000 ~name:"queue-model agreement"]

Figure 6: The complete Queue example of QCSTM

15

