Notes on Unnormalized Probability Models

Zijing Ou
School of Computer Science and Engineering
Sun Yat-sen University

In this script, we motivate the energy based models (EBM) by interpreting it as a maximum entropy
distribution, and then provides several methods on EBM learning.

1 Maximum Entropy Distribution

We begin by considering linear (mean-value) constraints on our distribution. In this case, we are
given a function f : X — R and a scale « € R, we wish to solve

maximize H(p) subject toE,[f(z)] =« (D)

over distribution density p(z),x € X. Rewriting problem (1), we see that it is equivalent to
maximize — /p(r) log p(x)dz

subject to /p(x)f(x)dx =a, plx)>0forze X, /p(x)dx =1. 2)
Let
Pt = {p(@) : Bp[f(2)] = a} 3)

be a set of distribution satisfying the expectation (linear) constraint E[f(z)] = «. We obtain the
following theorem.

Theorem 1.1. Let py have density

pa(e) = SPELDD = [ exp(—sa)/ ) @

IfE,, [f(2)] = o, then pg maximizes H (p) over P'"; moreover; the distribution py is unique.

Proof. First, we write a Lagrangian for the problem (1). Introducing Lagrange multipliers A\(x) > 0
for the constraint p(z:) > 0, 1o € R for the normalization constraint that | p(z)dz = 1, and 7 for
the constraints that E,[f(z)] = «, we obtain the following Lagrangian:

£l 007 = [ pa)togpa)ds o ( [ o)) —a)

+ 10 (/p(x)dx - 1) - /A(:v)p(a:)dx.

Now, heuristically treating the density p = [p(z)]zcx as a finite-dimentional vector (in the case that
X is finite, this is completely rigorous), we take derivatives and obtain

0
7‘6(177 Mo, M, A) =1+ logp('r) + Thf(x) =+ o — A(CC)

Ip(x)
=1+logp(x) + i f(x) + 1m0 — A(x).

Notes.



To find the minimizing p for the Lagrangian (the function is convex in p), we set this equal to zero to
find that

p(x) = exp(—m f(z) — 1 —no + A(@)).
Now, we note that with this setting, we always have p(z) > 0, so that the constraint p(z) > 0
is unnecessary and (by complementary slackness) we have A(z) = 0. In particular, by taking

no = —1+logZ = —1 + log [ exp(n: f(x))dx, we have that that optimal density p should have
the form

po(z) = eXp(—Zlf(f))’ (5)

Note that the maximum value of the entropy is

A / po(a) log po()da = log Z + s / po() f()da

=1+mno+ma. (6)
So one can get,
OHmax 1
= = = 7
m Do T ( )
which defines the inverse temperature. Now we see the form of distribution we would like to have
exp(—f(x)/T
() — ORI @/T)
Jexp(=f(x)/T)dx

(®)

Next, we show that the distribution py is unique. Assume there exists any other distribution p € ngn,
such that p = arg max,, H(p). In this case, we may expand the entropy H (p) as

H(p) = —/plogpdw = —/plogp% - /pIngedx

— —KL(pllpo) - / p()[— f(2)/T — log Z]dx

—~

2 ~KLpllpn) - | pale)|=f )T - log 2}z
= —KL(pllpe) + H(ps),

where in the step (%) we have used the fact that [p(z)f(z)dz = [pe(z)f(z)dz = a. As
KL(p|lpg) > 0 unless p = pg, we have shown that py is the unique distribution maximizing
the entropy, as desired. O

v

Note that T is generally set to be 1, which leads to the common form of energy base model

o) = 2D / exp(— f(x))da. ©)

2 Contrastive Divergence

2.1 CD on Probability Fitting

Given a data distribution py (), of which we solely could sample its empirical distribution. Our target
is using a function fy(z) with parameters @ to fit the probability of data. Specifically, we define the
following energy based model

_ exp(—fo())
Zg

where Zy, known as the partition function and indicated its dependency of parameters by the subscript
0, is defined as

po(z) , (10)

Zy = /exp(—fg(x))dx. 11
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Generally, Zj is intractable, especially in high dimensional scenarios. To learn the model parameters

6, one could maximize the probability of a set of training data X = {x1,...,zx}, given as
N N
exp(—fo(xi))
X)= i) = . 12
po(X) il;[lpe(w) };[1 Zs (12)

Equivalently, we can minimize the negative log likelihood of py(X), which is

1 N
L(0) :=1og Zp + 1= > folwi)- (13)
i=1

The gradient ascent algorithm can be applied to optimize parameters, in which we have to compute
the gradient of £(6)

N
1
VoL (0) = Volog Zy + Vo > folai)

i=1

1 1Y
— Z)vg /exp(ffg(:z:))d:r + ;vgfg(xi)

= [ 2RI G, fy )i + Byl Tl
=Ep,)[Vofo(z)] — Ep, () [Vofo(@)]. (14)

Though we can exploit Monte Carlo to estimate V£ (), the hardnesss arises from sampling from
pe(x), since we cannot obtain its close form due to the notorious partition function. As introduced
in [1], we can sidestep this issue by using MCMC sampling technique [2]. Specifically, given an
initial sample z(?) ~ p,4(x), we can apply k-step MCMC iteration to generate z(*) for pg(z), which
has been turn out that klirgo 2(®) ~ py(x). Consequently, the (14) can be approximated by CD-k

estimator

VoL(0) ~ Vglog fo(x?) — Vg log fo(z*). (15)

2.2 Examples for Latent Variable Models

Energy-based latent variable model is a popular nowadays thanks to its expressive modeling ability,
whose general form can be expressed by in terms of observation data = and latent variables z, with
the density function

e~ Eo(z,2)

— (16)

po(z,2) =

where Zy = f e~ Eo(2:2) ddz is the normalized term. In terms of maximum likelihood estimation,
we have to compute the gradients of log py(x) with respect to 6

Vo logpe(x) = Vy (log {/ eE"(w’Z)dz] — log Zg)

[ e Be@2ANEBy(x,2)dz Vs

J e Fo@2)dz A
B 1/Zy [ e Pe@2NVyEBy(x, 2)dz Vg [ e Pe@2)dzdz
N 1/Zy [ e Fo(@:2)dz Zg
~ [pe(x,2)VoEy(z, 2)dz N [ e Be@2vy By(x, 2)drdz
po(w) Zy

—/p9(2|a:)V9Eg(x,z)dz+/p9(x,z)VgE9(x,z)dxdz
—Epy 210y [VoEo(2,2)] + Epyz,2) [VoLo(x, 2)]. 17)
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In many cases, such as the RBM model, the first term has a closed form. While the second term is
more difficult to deal with since we have to draw samples from py(x, z), which is usually intractable.
The Contrastive Divergence algorithm [ ] addresses this issue by a finite-step MCMC to generates
approximated samples from py(z, z). However, this approximation is often insufficient and introduces
additional bias.

2.3 Unbiased Contrastive Divergence Algorithm

Recently, [3] proposed a new framework to remove bias of CD. The key idea of unbiased CD
algorithm is that we can compute expectations of random variables after finite many steps of Markov
Chain by introducing another Markov chain, which is strongly related to the theory of unbiased
MCMC developed by [4].

In particular, we want to compute E o[ f(z)], where in the expression of (17) M denotes py(z, z)
and f(x) denotes Vo Ey(z, z). If there exists two Markov chains {a; } and {b; } such that E[f(a;)] —
E[f(z)] ast — oo and E[f(a:)] = E[f(b¢)] for all ¢ > 0. Furthermore, if they satisfy that for some
random time 7, a; = b,_1 for all t > 7, then we have

Em(f(2)] = Ea | flar) + Y (flae) — f(at_l))]
L t=2
=Em f(aﬂ-&-Z(f(at)—f(bt—l))]
L t=2
=Enm | flar) + Y (f(at)_f(bt—l))] )
L t=2

where the second identity holds since E[f(a:)] = E[f(b;)] for all ¢ > 0, and the third one is due to
the fact that a; = b, for all t > 7. Thus, we only need to compute the finite number of expectations
since infinitely many terms are cancelled out. Such an idea seems rather simple, but the construction
of the chain {b; }, which satisfies two conditions: (i) E[f(a:)] = E[f(b;)] for all ¢ > 0; (ii) a; = bs_1
for all ¢ > 7, is a highly non-trivial task. We recommendedly defer to [3] for more details.

3 Noise Contrastive Estimation

3.1 NCE on Probability Fitting

To address the notorious normalization issue, one naive strategy is regarding it as a learnable parameter.
Specifically, the model is parameterized in terms of an unnormalized distribution fy and a learned
parameter Zy corresponding to the normalizing constant

po(x) = exp(—fo(x))/(Zo). (18)
Ideally, the maximum log-likelihood estimation can be applied to optimize parameter §. However it
fails in this scenario since the model faces a trivial solution that when Zy = 1, the log-likelihood will
be infinity.

Noise contrastive estimation address this issue by introducing a noise distribution p, (x), and the
model is learned by distinguishing the sample from p,; and p,,. Following [5], assuming that noise
samples are k times more frequent that data sample, we construct a mixture distribution

1 k
= — . 1
pm(x) k+ 1pd(x) + k+ 1pn(x) (19)
Then the posterior probability that samples o came from the data distribution is
p(D =1)p(z|D =1)

PD =) = D = (el D = 1) + p(D = 0)p(]D = 0)
_ iPa(®)
B T )
pd(l‘)

[ o S A— 20
@) + Fpn (@) 20)
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Since we would like to fit pg to pg, we use py in place of pg in (20), making the posterior probability
a function of the model parameter

po(z)
po(x) + kpy(z)
To learn the model by distinguishing samples from data and noise distribution, we maximize the

following objective function, which is equivalent to maximize log-likelihood estimation of Bernoulli
distribution

po(D =1|z) = 2L

_ po(z) kpn(z) }
J0) = (k+ I)Epm(x) [H[D($)=1] log po(z) + kipn(z) + H[D(x)=0] log p—e(x) + kpn(@)
Po(x) } [ kpn(z) ]
=E log ———————F—— kE log —————1| . 22
pa(z) {Og pe(x) T kpn(m) + Ky, (2) |lOg pe(x) n kpn(l‘) (22)

Here, we arrive at the final objective of noise contrastive estimation, which can be further approxi-
mated using Monte Carlo sampling

k

k n 1 ~
Z p (Z:) ,where x ~ pg, T; ~ pn. (23)

J(8) ~ log )+ kpa(E)

()+kpn

Note that the weights % are always lying in (0, 1), which make NCE-based learning

very stable compared with MLE. Interestingly, as indicated in [6], simply set Zy = 1, instead of
learning it, do not affect the performance of models.

Understanding NCE To fully understande the insight behind NCE, we take the gradient of 7 (6)
with respect to 0

- o Po@) g FPn(®)
V0T (0) = Ep,(a) [V@l & po(x) + kpn(x)} . @) [Vgl & po(x) + kpn(l")}
kpn (z) po(x)

( )Ve logpa(x)]

=E, () | —— V1 — kB, () | —0
P4(2) {pe(l“) + kpn(z) ° nga(x)} Pn (@) [pe(x) + kpp(x

_ kpy(z)
B /pe(w)—I—kpn(LL‘)(pd(x) 7p9(z))vf9 logpe(x)da:.

Then as k — oo, we have
VOT(6) = [ (pale) ~ po(a)) Vi log po(z)da
=E,,(2)[Vologpe(r)] — Epy(2)[Vo log pe()]. (24)

Actually, this is the gradient of log-likelihood estimation. To show this, we have

ngl)d(w)[lngﬁ(x)} = Epd(x) [Vg(—fg(.’b)) — Vylog Z@]

= Epaw) {Ve(—fe(:v)) - feXp(_fH(x)éeve(—fe(x))dx
= By, ) [Vo (= fo(@))] = Epy ) [Vo (= fo ()] (25)

As Zy is set to be a constant, (24) is equal to (25). That is, as ¥ — oo, the gradient of NCE is
equivalent to the maximum likelihood gradient.

3.2 Examples on Prediction Models

In prediction models, we are supposed to predict y € ) from x € X. Following the basic idea of
NCE, we can construct a joint distribution

. 1
pd(%%yh e ayN) = pru(m7yl) Hp’lj(y])7
o



where p,,, (zy) represents the joint probability of z, y and p,(y) is the marginal distribution of labels
y. Consequently, we can generate the samples by first drawing an index ¢ € {1, ..., N} uniformly at
random and for j = 1,..., N drawing (z,y;) ~ pay if j = @ but else drawing y; ~ p,. This yields a
conditional distribution

:ny( 1|1)
Pay (il 2) TT 25 o (y7) AN

N T N pay(uklm)
Sl Py k) T py () S, Pl

pd(i|x7y17"'ayN) = (26)

The intuition of NCE is that infer which of N samples of {1, ..., yn} is from the joint distribution
Py (zy). To this end, we further construct the following distribution with the score function fy(x,y)

f@(xvyi) ]
Soisy fo(@,y5)

Guiding by the insight of NCE, We train the model by minimizing the conditional entropy between
pd(iaxa Yis--- 7yN) andp@(ﬂxvyla R ZUN)

p@(i|xayla"'7y]\f): (27)

EQ = ]Epd(i,x,yl ..... yN)[_ 10gp9(7’|x7 Yiy- - ayN)]' (28)

We further assume py is universal, that is, it is expressive enough to model pg; such that
po(ilx,y1,...,yn) = pali|z,y1,...,yn) for some §. This assumption seems to hold in prac-
tice with neural network, though it might require an exponentially large parameter space. Under this
assumption, we find that compared with the formula expressions of equation 26 and 27, the optimal
parameter 6* satisfies

py\m(xy)
Jo(z,y) o« ———=.
py(y)
Using this results, we can rewrite the training objective in the case of optimal solution as
fG* (1'7 yl)
Lo« = =Ky, |log ="
Zj:l fo- (:Ca yj)
Pay (yilz) Py (yj]®)
5 jog P T 2iti py()
pa | 108 Pey (yil2)
Py (Yi)
_ ]Epd IOg 1+ py(yl) pmy(yﬂx)
pwy(yi‘x) i py(yj)
[ (%) Py (Y;|7)
~E,, log |1+ ————(N-1E, (., [ (the law of large numbers)
m Pay(yil2) ) | p (y;)
=E,, log |1+ M(N - 1)] (y; is independent of x)
L Pay(vil®)
[ py(yi) }
>Ep,log | =1 (Pay(vil®) > py(y:)
8 [y ey P ) =
= —I(x;y;) +log N. (29)

Therefore, I(z;y;) = I(x;y) > logN — Egpt > log N — Ly, that is, minimizing Ly over 0
corresponds to maximizing a parameterized lower bound of I (x; ), and for this reason this estimation
is sometimes called "InfoNCE".

4 Primal-Dual view of MLE

Duality provides an alternative strategy to solve the intractable issue of the log partition term [7, 8, 9].
Specifically, given an unnormalized probability density function
po(x) = exp(—fo(x) — log Zp), (30)

vi



where Zy = fx exp(— fo(x))dx is the partition function, the log-partition function can be estimated
by using its dual form

log Zy = m(?xEq[—f(x)] + H(q), (31

where H(q) = —E,[log q] is the entropy of ¢(-), which leads to a primal-dual view of the MLE

max By, [log po(x)] = maxminE,, [ f ()] — Eq[—f ()] - H(q), (32)

which bypasses the explicit computation of the partition function. To understand this duality, we use
Jensen’s inequality which is commonly used in variational analyses

log Zy = 1og/q(x)(m)((]<£§(z)>dx

> Ey[—fo(x) —logq(x)]
= Eq[—fo(2)] + H(q).

It can be further shown that the equality holds when g = p, via an addictive KL term

exp(—fo(2) a(@)

E,[—fo(x)] + H(q) + KL(qllp) = / 4(z) log

q(z)  pe(z)
7/q( )log po(x) d

= /q(x) log Zydx = log Zy
log Zg = Eq[—fo(x)] + H(q), when q(x) = po().

An alternative perspective derived from Fenchel inequality is shown in [10]. However, the design of
q(z) is nontrival. We recommend the readers refer to [8] for more details.
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