Papers by Lurdes Serrazina
This paper aims to identify the in-service primary teachers' knowledge of their students' mathema... more This paper aims to identify the in-service primary teachers' knowledge of their students' mathematical reasoning processes. Data were collected in the context of a teacher education experiment through recording of the Zoom sessions regarding the autonomous work carried out by the groups and the whole group discussions. The results show that the activity of planning and carrying out tasks that promote reasoning, as well as joint analysis with peers and experts, has a significant potential for developing knowledge that is recognized by teachers themselves.
Revista de Educação Pública
Este artigo pretende, partindo de uma experiência de formação com professores dos primeiros anos,... more Este artigo pretende, partindo de uma experiência de formação com professores dos primeiros anos, focada no ensino exploratório e no desenvolvimento do raciocínio matemático, discutir o conhecimento dos professores para promover a aprendizagem dos alunos. Usa uma abordagem qualitativa-interpretativa e os dados recolhidos sujeitos a análise de conteúdo. A interligação entre a teoria e a prática presente nas tarefas de formação parece ter um forte contributo para que as professoras concretizem nas suas práticas letivas a resolução de uma tarefa exploratória, identifiquem os processos de raciocínio envolvidos e ações do professor presentes, alargando assim o seu conhecimento matemático e didático.

Acta Scientiae, Apr 14, 2023
Background: Teachers' knowledge of mathematical reasoning and how to foster it in pupils influenc... more Background: Teachers' knowledge of mathematical reasoning and how to foster it in pupils influence the way they plan and conduct their lessons. In geometry, it implies developing visualisation and spatial structuring. Objectives: This article addresses the knowledge of the preservice and in-service primary teachers about reasoning processes, namely the way they relate several reasoning processes when solving a didactical task involving geometry. Design: The study reported here followed a qualitative-interpretative approach, adopting a design-based research modality. Setting and Participants: The teacher education experiments were developed with 31 preservice primary teachers and 19 in-service teachers of grades 1 to 6. The participants were not selected since they were the unique classes of pre-and in-service primary teachers in the institution. Data collection and analysis: Data were collected by audio and video records of lessons, participant observation and the collection of written records of the preservice teachers. We used content analysis of the data using the framework we elaborated on before concerned with knowledge of reasoning processes. Results: The preservice teachers identified the process of generalising, relating it with comparing and exemplifying processes. Regarding the process of justifying, participants used the association to understand why a relationship works as a selection criterion for that process. On the contrary, the distinction between justifying and generalising appeared to be more difficult for in-service teachers. Conclusions: Collaborative work on didactical tasks that are supported by relevant mathematical tasks and real classroom episodes are promising scenarios to develop teachers' knowledge about mathematical reasoning.
Pontos de vista, reacções, ideias
Educação e Matemática, Apr 30, 2000
Espaço GTI: Contributos da investigação para a aprendizagem da matemática: uma visão global
Educação e Matemática, Dec 31, 2017

Esta comunicação analisa um conjunto de estudos que foram realizados em Portugal desde 2005, que ... more Esta comunicação analisa um conjunto de estudos que foram realizados em Portugal desde 2005, que têm como foco ou contexto o Programa de Formação Contínua em Matemática para Professores dos 1.º e 2.º ciclos do Ensino Básico (PFCM) e que correspondem a trabalhos para obtenção de graus académicos e/ou publicados em actas de encontros nacionais e internacionais ou em revistas. Os trabalhos analisados são, na sua grande maioria, realizados por membros de equipas do PFCM ou da Comissão de Acompanhamento. A maior parte destes estudos centra-se no desenvolvimento profissional dos professores envolvidos, com incidência na análise do aprofundamento do seu conhecimento matemático, didáctico e curricular. Um olhar transversal sobre os estudos permite destacar os contributos do modelo do PFCM, centrado na prática lectiva, com grande ênfase na leccionação e na reflexão sobre a mesma, para a evolução dos professores participantes no PFCM. O papel da análise das produções dos alunos para a reflexão dos professores é outro aspecto a destacar.
The Project "Number sense development: curricular demands and perspectives" aims to study the dev... more The Project "Number sense development: curricular demands and perspectives" aims to study the development of number sense in elementary school (5 to 12 years old). This paper presents a discussion based on one of the six case studies developed by the project. We will focuses on the strategies used by 7-years old pupils when solving multiplication problems, namely on the awareness of existence of different strategies and the inclination to utilize an efficient representation or method.
HAL (Le Centre pour la Communication Scientifique Directe), Feb 2, 2022
This paper aims to discuss the prospective primary teachers' knowledge of reasoning processes, na... more This paper aims to discuss the prospective primary teachers' knowledge of reasoning processes, namely the way they relate several reasoning processes, when solving a didactical task involving geometry. Data were collected by audio and video records of lessons, participant observation and the collection of written records of the prospective teachers. The results show how a group of prospective primary teachers may reach a high level of knowledge when involved in didactical tasks that are supported by relevant mathematical tasks and real classroom episodes, while working collaboratively. In particular, geometry tasks that involve spatial structuring favor the emergence of different reasoning processes and its relationships.
Recursos na internet
Quadrante, Jun 30, 2002
Encontro de Mestrados em Educação e Ensino, 2019
HAL (Le Centre pour la Communication Scientifique Directe), Feb 4, 2015
This poster focus on an exploratory study which is part of a research study which aims to underst... more This poster focus on an exploratory study which is part of a research study which aims to understand how to develop students' emerging understanding of rational numbers, at elementary school, looking into how number sense development is promoted, through the use of different representations-percents, decimals and fractions-being the percentage the introductory one. Through a design research, based on a teaching experiment, guided by a conjecture, we intend to analyse the interactions, the strategies and the students' productions when solving tasks. In this poster some data analysis from the exploratory study, concerning the use of percents, will be presented. This data show that percentage seems to be a good starting to introduce rational numbers.
Revista Interacções, Jul 6, 2009
Este artigo faz um balanço do desenvolvimento do Programa de Formação Contínua em Matemática para... more Este artigo faz um balanço do desenvolvimento do Programa de Formação Contínua em Matemática para professores do 1.º e 2.º ciclo (PFCM), desde a sua criação em 2005 até à totalidade. O artigo começa por caracterizar o PFCM, especificando os seus objectivos e princípios orientadores, a sua organização e a caracterização e intenção dos diferentes tipos de sessões. É feito um balanço quantitativo e qualitativo do desenvolvimento do PFCM nos últimos quatro anos, bem como enunciados os aspectos considerados mais positivos e aqueles que se consideram menos conseguidos. O artigo termina com um balanço global do PFCM bem como dos desafios que enfrenta.

Revista Eletrônica de Educação, May 29, 2012
Neste ensaio discuto o conhecimento matemático para ensinar, em particular no caso do professor q... more Neste ensaio discuto o conhecimento matemático para ensinar, em particular no caso do professor que ensina matemática nos primeiros anos de escolaridade, nomeadamente, o papel que a sequência planificação-açãoreflexão pode ter no desenvolvimento e consolidação desse conhecimento. Começo por discutir o que se espera do professor como professor de Matemática, ilustrando com exemplos concretos, que pretendem mostrar que não basta ao professor saber a Matemática que ensina, mas tem também de saber como a ensinar e como avaliar as aprendizagens que daí resultam. Discuto depois o papel da planificação da atividade letiva e da reflexão sobre a prática para o desenvolvimento do conhecimento profissional do professor. Relativamente à planificação é discutido o constructo "trajetória de aprendizagem" e as suas componentes, em especial as sequências de ensino e o papel do professor no seu desenvolvimento. A reflexão sobre a prática, tendo como referência a planificação realizada previamente, é fundamental neste processo. O ensaio termina com a apresentação e discussão de um caso, o da professora Maria, uma professora com uma larga experiência, formanda do Programa de Formação Contínua em Matemática, analisando, a partir do seu portefólio escrito, a planificação e correspondente reflexão sobre duas aulas num 2.º ano de escolaridade.
Educação Matemática Pesquisa, Sep 2, 2019
A2 "Eu perguntei se o cinco não tem metade": ações de uma professora dos primeiros anos que apoia... more A2 "Eu perguntei se o cinco não tem metade": ações de uma professora dos primeiros anos que apoiam o raciocínio matemático "I asked if five has not a half": teacher´s actions of the first years which support mathematical reasoning
HAL (Le Centre pour la Communication Scientifique Directe), Feb 1, 2017
In this paper, we report part of a study carried out within a design research methodology. An ini... more In this paper, we report part of a study carried out within a design research methodology. An initial conjecture was made that included the importance of the hundred square model to facilitate the discussion about decimal number system features and connections among and within different rational numbers' representations. We present how this model was used and why it led to changes into different models, 10x100 grid, and decimat, during the teaching experiment. Finally, we reflect on how these changes inform the initial conjecture.

HAL (Le Centre pour la Communication Scientifique Directe), Feb 1, 2017
This paper discusses an approach that fosters students' conceptual understandings of rational num... more This paper discusses an approach that fosters students' conceptual understandings of rational numbers with an initial focus on percentage, in elementary school years. This approach enables students to work with multiple representations associated with percentage which are taken as models of contextualized situation and reconstructed as models for reasoning through an emergent modeling process. A classroom teaching experiment was developed following the methodological procedures of a Design Research. Data were collected through participant observation, supported in a logbook, audio-and video-recorded lessons and students' productions in the classroom. The analysis of data reported in this paper seems to highlight that through this approach, percentage-if privileged in the introductory steps of its learning-strengthens the interpretation of multiplicative relations and fosters understanding of rational numbers through an emergent modeling process.
HAL (Le Centre pour la Communication Scientifique Directe), Feb 6, 2019
The main goal of this paper is to understand students' reasoning when solving a task that involve... more The main goal of this paper is to understand students' reasoning when solving a task that involves quantitative difference. A qualitative methodology was used within the modality of teaching experiment. The data collection was done through the participant observation supported by video and audio recording of the work developed by two pairs of second graders, as well as the records of whole class discussions. To analyse data, we organized them into two categories: additive comparisons and complex additive relationships. The results show that these students were able to deal with quantitative difference, establishing relationships between quantities, even in a situation where initial numbers were unknown.
Uploads
Papers by Lurdes Serrazina