Cheese ripening is a complex biochemical process driven by microbial communities composed of both... more Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to t... more Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to the development of the typical color, flavor and texture of the final product. In situ measurements of gene expression are increasingly being used to improve our understanding of the microbial flora activity in cheeses. The objective of the present study was to investigate the physiology and metabolic activity of Geotrichum candidum during the ripening of Reblochon-type cheeses by quantifying mRNA transcripts at various ripening times. The expression of 80 genes involved in various functions could be quantified with a correct level of biological repeatability using a set of three stable reference genes. As ripening progresses, a decrease in expression was observed for genes involved in cell wall organization, translation, vesicular mediated transport, and in cytoskeleton constituents and ribosomal protein genes. There was also a decrease in the expression of mitochondrial F1F0 ATP synthase and plasma membrane H(+) ATPase genes. Some genes involved in the catabolism of lactate, acetate and ethanol were expressed to a greater extent at the beginning of ripening. During the second part of ripening, there was an increased expression of genes involved in the transport and catabolism of amino acids, which could be attributed to a change in the energy source. There was also an increase in the expression of genes involved in autophagy and of genes possibly involved in lifespan determination. Quantification of mRNA transcripts may also be used to produce bioindicators relevant for cheesemaking, for example when considering genes encoding enzymes involved in the catabolism of amino acids.
Cheese ripening is a complex biochemical process driven by microbial communities composed of both... more Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to t... more Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to the development of the typical color, flavor and texture of the final product. In situ measurements of gene expression are increasingly being used to improve our understanding of the microbial flora activity in cheeses. The objective of the present study was to investigate the physiology and metabolic activity of Geotrichum candidum during the ripening of Reblochon-type cheeses by quantifying mRNA transcripts at various ripening times. The expression of 80 genes involved in various functions could be quantified with a correct level of biological repeatability using a set of three stable reference genes. As ripening progresses, a decrease in expression was observed for genes involved in cell wall organization, translation, vesicular mediated transport, and in cytoskeleton constituents and ribosomal protein genes. There was also a decrease in the expression of mitochondrial F1F0 ATP synthase and plasma membrane H(+) ATPase genes. Some genes involved in the catabolism of lactate, acetate and ethanol were expressed to a greater extent at the beginning of ripening. During the second part of ripening, there was an increased expression of genes involved in the transport and catabolism of amino acids, which could be attributed to a change in the energy source. There was also an increase in the expression of genes involved in autophagy and of genes possibly involved in lifespan determination. Quantification of mRNA transcripts may also be used to produce bioindicators relevant for cheesemaking, for example when considering genes encoding enzymes involved in the catabolism of amino acids.
Uploads
Papers by Frédéric Fer