Papers by kazi mahmudul hassan

Sensors
Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the electrica... more Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the electrical functioning of the brain. There is an urgent demand for an automatic epilepsy detection system using electroencephalography (EEG) for clinical application. In this paper, the EEG signal is divided into short time frames. Discrete wavelet transform is used to decompose each frame into a number of subbands. Different entropies as well as a group of features with which to characterize the spike events are extracted from each subband signal of an EEG frame. The features extracted from individual subbands are concatenated, yielding a high-dimensional feature vector. A discriminative subset of features is selected from the feature vector using a graph eigen decomposition (GED)-based approach. Thus, the reduced number of features obtained is effective for differentiating the underlying characteristics of EEG signals that indicate seizure events and those that indicate nonseizure events. The G...

Science Journal of Circuits, Systems and Signal Processing
This paper presents a voiced/unvoiced classification algorithm of the noisy speech signal by anal... more This paper presents a voiced/unvoiced classification algorithm of the noisy speech signal by analyzing two acoustic features of the speech signal. Short-time energy and short-time zero-crossing rates are one of the most distinguishable time domain features of a speech signal to classify its voiced activity into voiced/unvoiced segment. A new idea is developed where frame by frame processing has done in narrow band speech signal using spectrogram image. Two time domain features, short-time energy (STE) and short-time zero-crossing rate (ZCR) are used to classify its voiced/unvoiced parts. In the first stage, each frame of the analyzing spectrogram is divided into three separate sub bands and examines their short-time energy ratio pattern. Then an energy ratio pattern matching look up table is used to classify the voicing activity. However, this method successfully classifies patterns 1 through 4 but fails in the rest of the patterns in the look up table. Therefore, the rest of the patterns are confirmed in the second stage where frame wise short-time average zero-crossing rate is compared with a threshold value. In this study, the threshold value is calculated from the short-time average zero-crossing rate of White Gaussian Noise (wGn). The accuracy of the proposed method is evaluated using both male and female speech waveforms under different signal-to-noise ratios (SNRs). Experimental results show that the proposed method achieves better accuracy than the conventional methods in the literature.
Rajshahi University Journal of Science and Engineering, 2016
This study proposed an enhanced time-frequency representation of audio signal…
Uploads
Papers by kazi mahmudul hassan