A lot of the recent success in natural language processing (NLP) has been driven by distributed v... more A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner. These representations are typically used as general purpose features for words across a range of NLP problems. However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem. Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations. In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model. We train this model on several data sources with multiple training objectives on over 100 million sentences. Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods. We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations. 1
In this work, we report the setup and results of the Liver Tumor Segmentation Benchmark (LiTS) or... more In this work, we report the setup and results of the Liver Tumor Segmentation Benchmark (LiTS) organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and International Conference On Medical Image Computing & Computer Assisted Intervention (MICCAI) 2017. Twenty-four valid state-of-the-art liver and liver tumor segmentation algorithms were applied to a set of 131 computed tomography (CT) volumes with different types of tumor contrast levels (hyper-/hypo-intense), abnormalities in tissues (metastasectomie) size and varying amount of lesions. The submitted algorithms have been tested on 70 undisclosed volumes. The dataset is created in collaboration with seven hospitals and research institutions and manually blind reviewed by independent three radiologists. We found that not a single algorithm performed best for liver and tumors. The best liver segmentation algorithm achieved a Dice score of 0.96(MICCAI) whereas for tumor segmentation the best algorithm evaluated at 0.67(ISBI) and 0.70(MICCAI). The LiTS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
The number of visually impaired or blind (VIB) people in the world is estimated at several hundre... more The number of visually impaired or blind (VIB) people in the world is estimated at several hundred million[4]. Based on a series of interviews with the VIB and developers of assistive technology, this paper provides a survey of machine-learning based mobile applications and identifies the most relevant applications. We discuss the functionality of these apps, how they align with the needs and requirements of the VIB users, and how they can be improved with techniques such as federated learning and model compression. As a result of this study we identify promising future directions of research in mobile perception, micro-navigation, and contentsummarization.
Background: The rapid global spread of COVID-19 has led to an unprecedented demand for effective ... more Background: The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution. In order to make informed public health choices, there is a need for tools which allow evaluation and comparison of DCT methods. Methods: We introduce an agent-based compartmental simulator we call COVI-AgentSim, integrating detailed consideration of virology, disease progression, social contact networks, and behaviour/mobility patterns, based on parameters derived from empirical research. We verify by comparing to real data that COVI-AgentSim is able to reproduce realistic COVID-19 spread dynamics, and perform a sensitivity analysis to verify that the relative performance of contact tracing methods are consistent across a range of settings. We use COVI-AgentSim to perform cost-benefit analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features. Findings: We find all DCT methods consistently reduce the spread of the disease, and that the advantage of FCT over BCT is maintained over a wide range of adoption rates. Feature-based methods of contact tracing avert more disability-adjusted life years (DALYs) per socioeconomic cost (measured by productive hours lost). Interpretation: This research provides a useful testbed to compare and optimize real-world implementations of contact tracing (CT) schemes, a first step in responsible and informed use of CT as an epidemic intervention tool. Our results suggest any DCT method can help save lives, support reopening of economies, and prevent second-wave outbreaks, and that FCT methods are a promising direction for enriching BCT using self-reported symptoms, yielding earlier warning signals
In this paper, we explore new approaches to combining information encoded within the learned repr... more In this paper, we explore new approaches to combining information encoded within the learned representations of auto-encoders. We explore models that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semisupervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research. 1 1 Code provided here: https://github.com/christopher-beckham/amr * Author is a Canada CIFAR AI Chair Preprint. Under review.
Procedural terrain generation for video games has been traditionally been done with smartly desig... more Procedural terrain generation for video games has been traditionally been done with smartly designed but handcrafted algorithms that generate heightmaps. We propose a first step toward the learning and synthesis of these using recent advances in deep generative modelling with openly available satellite imagery from NASA.
We propose to meta-learn causal structures based on how fast a learner adapts to new distribution... more We propose to meta-learn causal structures based on how fast a learner adapts to new distributions arising from sparse distributional changes, e.g. due to interventions, actions of agents and other sources of non-stationarities. We show that under this assumption, the correct causal structural choices lead to faster adaptation to modified distributions because the changes are concentrated in one or just a few mechanisms when the learned knowledge is modularized appropriately. This leads to sparse expected gradients and a lower effective number of degrees of freedom needing to be relearned while adapting to the change. It motivates using the speed of adaptation to a modified distribution as a meta-learning objective. We demonstrate how this can be used to determine the cause-effect relationship between two observed variables. The distributional changes do not need to correspond to standard interventions (clamping a variable), and the learner has no direct knowledge of these interventions. We show that causal structures can be parameterized via continuous variables and learned end-to-end. We then explore how these ideas could be used to also learn an encoder that would map low-level observed variables to unobserved causal variables leading to faster adaptation out-of-distribution, learning a representation space where one can satisfy the assumptions of independent mechanisms and of small and sparse changes in these mechanisms due to actions and non-stationarities.
Probability distributions produced by the crossentropy loss for ordinal classification problems c... more Probability distributions produced by the crossentropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datasets, obtaining promising results.
Proceedings of the AAAI Conference on Artificial Intelligence
One key challenge in statistical relational learning (SRL) is scalable inference. Unfortunately,... more One key challenge in statistical relational learning (SRL) is scalable inference. Unfortunately, most real-world problems in SRL have expressive models that translate into large grounded networks, representing a bottleneck for any inference method and weakening its scalability. In this paper we introduce Preference Relaxation (PR), a two-stage strategy that uses the determinism present in the underlying model to improve the scalability of relational inference. The basic idea of PR is that if the underlying model involves mandatory (i.e. hard) constraints as well as preferences (i.e. soft constraints) then it is potentially wasteful to allocate memory for all constraints in advance when performing inference. To avoid this, PR starts by relaxing preferences and performing inference with hard constraints only. It then removes variables that violate hard constraints, thereby avoiding irrelevant computations involving preferences. In addition it uses the removed variables to enlarge the...
Proceedings of the AAAI Conference on Artificial Intelligence
We present a series of visual information extraction experiments using the Faces of Wikipedia dat... more We present a series of visual information extraction experiments using the Faces of Wikipedia database - a new resource that we release into the public domain for both recognition and extraction research containing over 50,000 identities and 60,000 disambiguated images of faces. We compare different techniques for automatically extracting the faces corresponding to the subject of a Wikipedia biography within the images appearing on the page. Our top performing approach is based on probabilistic graphical models and uses the text of Wikipedia pages, similarities of faces as well as various other features of the document, meta-data and image files. Our method resolves the problem jointly for all detected faces on a page. While our experiments focus on extracting faces from Wikipedia biographies, our approach is easily adapted to other types of documents and multiple documents. We focus on Wikipedia because the content is a Creative Commons resource and we provide our database to the c...
We propose a new self-organizing hierarchical softmax formulation for neural-network-based langua... more We propose a new self-organizing hierarchical softmax formulation for neural-network-based language models over large vocabularies. Instead of using a predefined hierarchical structure, our approach is capable of learning word clusters with clear syntactical and semantic meaning during the language model training process. We provide experiments on standard benchmarks for language modeling and sentence compression tasks. We find that this approach is as fast as other efficient softmax approximations, while achieving comparable or even better performance relative to similar full softmax models.
Then detection and identification of extreme weather events in large-scale climate simulations is... more Then detection and identification of extreme weather events in large-scale climate simulations is an important problem for risk management, informing governmental policy decisions and advancing our basic understanding of the climate system. Recent work has shown that fully supervised convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-known types of extreme weather events when large amounts of labeled data are available. However, many different types of spatially localized climate patterns are of interest including hurricanes, extra-tropical cyclones, weather fronts, and blocking events among others. Existing labeled data for these patterns can be incomplete in various ways, such as covering only certain years or geographic areas and having false negatives. This type of climate data therefore poses a number of interesting machine learning challenges. We present a multichannel spatiotemporal CNN architecture for semi-supervised bounding box predict...
There has been growing interest in using neural networks and deep learning techniques to create d... more There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale data set consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a data set consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms and methods suitable for composing conversat...
It is well known that it is challenging to train deep neural networks and recurrent neural networ... more It is well known that it is challenging to train deep neural networks and recurrent neural networks for tasks that exhibit long term dependencies. The vanishing or exploding gradient problem is a well known issue associated with these challenges. One approach to addressing vanishing and exploding gradients is to use either soft or hard constraints on weight matrices so as to encourage or enforce orthogonality. Orthogonal matrices preserve gradient norm during backpropagation and may therefore be a desirable property. This paper explores issues with optimization convergence, speed and gradient stability when encouraging or enforcing orthogonality. To perform this analysis, we propose a weight matrix factorization and parameterization strategy through which we can bound matrix norms and therein control the degree of expansivity induced during backpropagation. We find that hard constraints on orthogonality can negatively affect the speed of convergence and model performance.
Generative Adversarial Networks (GANs) are a powerful framework for deep generative modeling. Pos... more Generative Adversarial Networks (GANs) are a powerful framework for deep generative modeling. Posed as a two-player minimax problem, GANs are typically trained end-to-end on real-valued data and can be used to train a generator of high-dimensional and realistic images. However, a major limitation of GANs is that training relies on passing gradients from the discriminator through the generator via back-propagation. This makes it fundamentally difficult to train GANs with discrete data, as generation in this case typically involves a non-differentiable function. These difficulties extend to the reinforcement learning setting when the action space is composed of discrete decisions. We address these issues by reframing the GAN framework so that the generator is no longer trained using gradients through the discriminator, but is instead trained using a learned critic in the actor-critic framework with a Temporal Difference (TD) objective. This is a natural fit for sequence modeling and w...
We present an unsupervised approach for learning to estimate three dimensional (3D) facial struct... more We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicting 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial keypoints of an input image in an unsupervised manner, without using any form of ground-truth depth information. We show how it is possible to use these depths as intermediate computations within a new backpropable loss to predict the parameters of a 3D affine transformation matrix that maps inferred 3D keypoints of an input face to the corresponding 2D keypoints on a desired target facial geometry or pose. Our resulting approach, called DepthNets, can therefore be used to infer plausible 3D transformations from one face pose to another, allowing faces to be frontalized, transformed into 3D models or even warped to another pose and facial geometry. Lastly, we identify certain shortcomings with our formulation, and explo...
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions... more Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of...
Learning long-term dependencies in extended temporal sequences requires credit assignment to even... more Learning long-term dependencies in extended temporal sequences requires credit assignment to events far back in the past. The most common method for training recurrent neural networks, back-propagation through time (BPTT), requires credit information to be propagated backwards through every single step of the forward computation, potentially over thousands or millions of time steps. This becomes computationally expensive or even infeasible when used with long sequences. Importantly, biological brains are unlikely to perform such detailed reverse replay over very long sequences of internal states (consider days, months, or years.) However, humans are often reminded of past memories or mental states which are associated with the current mental state. We consider the hypothesis that such memory associations between past and present could be used for credit assignment through arbitrarily long sequences, propagating the credit assigned to the current state to the associated past state. B...
Recent progress in deep generative models has been fueled by two paradigms -- autoregressive and ... more Recent progress in deep generative models has been fueled by two paradigms -- autoregressive and adversarial models. We propose a combination of both approaches with the goal of learning generative models of text. Our method first produces a high-level sentence outline and then generates words sequentially, conditioning on both the outline and the previous outputs. We generate outlines with an adversarial model trained to approximate the distribution of sentences in a latent space induced by general-purpose sentence encoders. This provides strong, informative conditioning for the autoregressive stage. Our quantitative evaluations suggests that conditioning information from generated outlines is able to guide the autoregressive model to produce realistic samples, comparable to maximum-likelihood trained language models, even at high temperatures with multinomial sampling. Qualitative results also demonstrate that this generative procedure yields natural-looking sentences and interpol...
We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "bac... more We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given sequence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task.
A lot of the recent success in natural language processing (NLP) has been driven by distributed v... more A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner. These representations are typically used as general purpose features for words across a range of NLP problems. However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem. Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations. In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model. We train this model on several data sources with multiple training objectives on over 100 million sentences. Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods. We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations. 1
In this work, we report the setup and results of the Liver Tumor Segmentation Benchmark (LiTS) or... more In this work, we report the setup and results of the Liver Tumor Segmentation Benchmark (LiTS) organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and International Conference On Medical Image Computing & Computer Assisted Intervention (MICCAI) 2017. Twenty-four valid state-of-the-art liver and liver tumor segmentation algorithms were applied to a set of 131 computed tomography (CT) volumes with different types of tumor contrast levels (hyper-/hypo-intense), abnormalities in tissues (metastasectomie) size and varying amount of lesions. The submitted algorithms have been tested on 70 undisclosed volumes. The dataset is created in collaboration with seven hospitals and research institutions and manually blind reviewed by independent three radiologists. We found that not a single algorithm performed best for liver and tumors. The best liver segmentation algorithm achieved a Dice score of 0.96(MICCAI) whereas for tumor segmentation the best algorithm evaluated at 0.67(ISBI) and 0.70(MICCAI). The LiTS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
The number of visually impaired or blind (VIB) people in the world is estimated at several hundre... more The number of visually impaired or blind (VIB) people in the world is estimated at several hundred million[4]. Based on a series of interviews with the VIB and developers of assistive technology, this paper provides a survey of machine-learning based mobile applications and identifies the most relevant applications. We discuss the functionality of these apps, how they align with the needs and requirements of the VIB users, and how they can be improved with techniques such as federated learning and model compression. As a result of this study we identify promising future directions of research in mobile perception, micro-navigation, and contentsummarization.
Background: The rapid global spread of COVID-19 has led to an unprecedented demand for effective ... more Background: The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution. In order to make informed public health choices, there is a need for tools which allow evaluation and comparison of DCT methods. Methods: We introduce an agent-based compartmental simulator we call COVI-AgentSim, integrating detailed consideration of virology, disease progression, social contact networks, and behaviour/mobility patterns, based on parameters derived from empirical research. We verify by comparing to real data that COVI-AgentSim is able to reproduce realistic COVID-19 spread dynamics, and perform a sensitivity analysis to verify that the relative performance of contact tracing methods are consistent across a range of settings. We use COVI-AgentSim to perform cost-benefit analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features. Findings: We find all DCT methods consistently reduce the spread of the disease, and that the advantage of FCT over BCT is maintained over a wide range of adoption rates. Feature-based methods of contact tracing avert more disability-adjusted life years (DALYs) per socioeconomic cost (measured by productive hours lost). Interpretation: This research provides a useful testbed to compare and optimize real-world implementations of contact tracing (CT) schemes, a first step in responsible and informed use of CT as an epidemic intervention tool. Our results suggest any DCT method can help save lives, support reopening of economies, and prevent second-wave outbreaks, and that FCT methods are a promising direction for enriching BCT using self-reported symptoms, yielding earlier warning signals
In this paper, we explore new approaches to combining information encoded within the learned repr... more In this paper, we explore new approaches to combining information encoded within the learned representations of auto-encoders. We explore models that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semisupervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research. 1 1 Code provided here: https://github.com/christopher-beckham/amr * Author is a Canada CIFAR AI Chair Preprint. Under review.
Procedural terrain generation for video games has been traditionally been done with smartly desig... more Procedural terrain generation for video games has been traditionally been done with smartly designed but handcrafted algorithms that generate heightmaps. We propose a first step toward the learning and synthesis of these using recent advances in deep generative modelling with openly available satellite imagery from NASA.
We propose to meta-learn causal structures based on how fast a learner adapts to new distribution... more We propose to meta-learn causal structures based on how fast a learner adapts to new distributions arising from sparse distributional changes, e.g. due to interventions, actions of agents and other sources of non-stationarities. We show that under this assumption, the correct causal structural choices lead to faster adaptation to modified distributions because the changes are concentrated in one or just a few mechanisms when the learned knowledge is modularized appropriately. This leads to sparse expected gradients and a lower effective number of degrees of freedom needing to be relearned while adapting to the change. It motivates using the speed of adaptation to a modified distribution as a meta-learning objective. We demonstrate how this can be used to determine the cause-effect relationship between two observed variables. The distributional changes do not need to correspond to standard interventions (clamping a variable), and the learner has no direct knowledge of these interventions. We show that causal structures can be parameterized via continuous variables and learned end-to-end. We then explore how these ideas could be used to also learn an encoder that would map low-level observed variables to unobserved causal variables leading to faster adaptation out-of-distribution, learning a representation space where one can satisfy the assumptions of independent mechanisms and of small and sparse changes in these mechanisms due to actions and non-stationarities.
Probability distributions produced by the crossentropy loss for ordinal classification problems c... more Probability distributions produced by the crossentropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datasets, obtaining promising results.
Proceedings of the AAAI Conference on Artificial Intelligence
One key challenge in statistical relational learning (SRL) is scalable inference. Unfortunately,... more One key challenge in statistical relational learning (SRL) is scalable inference. Unfortunately, most real-world problems in SRL have expressive models that translate into large grounded networks, representing a bottleneck for any inference method and weakening its scalability. In this paper we introduce Preference Relaxation (PR), a two-stage strategy that uses the determinism present in the underlying model to improve the scalability of relational inference. The basic idea of PR is that if the underlying model involves mandatory (i.e. hard) constraints as well as preferences (i.e. soft constraints) then it is potentially wasteful to allocate memory for all constraints in advance when performing inference. To avoid this, PR starts by relaxing preferences and performing inference with hard constraints only. It then removes variables that violate hard constraints, thereby avoiding irrelevant computations involving preferences. In addition it uses the removed variables to enlarge the...
Proceedings of the AAAI Conference on Artificial Intelligence
We present a series of visual information extraction experiments using the Faces of Wikipedia dat... more We present a series of visual information extraction experiments using the Faces of Wikipedia database - a new resource that we release into the public domain for both recognition and extraction research containing over 50,000 identities and 60,000 disambiguated images of faces. We compare different techniques for automatically extracting the faces corresponding to the subject of a Wikipedia biography within the images appearing on the page. Our top performing approach is based on probabilistic graphical models and uses the text of Wikipedia pages, similarities of faces as well as various other features of the document, meta-data and image files. Our method resolves the problem jointly for all detected faces on a page. While our experiments focus on extracting faces from Wikipedia biographies, our approach is easily adapted to other types of documents and multiple documents. We focus on Wikipedia because the content is a Creative Commons resource and we provide our database to the c...
We propose a new self-organizing hierarchical softmax formulation for neural-network-based langua... more We propose a new self-organizing hierarchical softmax formulation for neural-network-based language models over large vocabularies. Instead of using a predefined hierarchical structure, our approach is capable of learning word clusters with clear syntactical and semantic meaning during the language model training process. We provide experiments on standard benchmarks for language modeling and sentence compression tasks. We find that this approach is as fast as other efficient softmax approximations, while achieving comparable or even better performance relative to similar full softmax models.
Then detection and identification of extreme weather events in large-scale climate simulations is... more Then detection and identification of extreme weather events in large-scale climate simulations is an important problem for risk management, informing governmental policy decisions and advancing our basic understanding of the climate system. Recent work has shown that fully supervised convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-known types of extreme weather events when large amounts of labeled data are available. However, many different types of spatially localized climate patterns are of interest including hurricanes, extra-tropical cyclones, weather fronts, and blocking events among others. Existing labeled data for these patterns can be incomplete in various ways, such as covering only certain years or geographic areas and having false negatives. This type of climate data therefore poses a number of interesting machine learning challenges. We present a multichannel spatiotemporal CNN architecture for semi-supervised bounding box predict...
There has been growing interest in using neural networks and deep learning techniques to create d... more There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale data set consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a data set consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms and methods suitable for composing conversat...
It is well known that it is challenging to train deep neural networks and recurrent neural networ... more It is well known that it is challenging to train deep neural networks and recurrent neural networks for tasks that exhibit long term dependencies. The vanishing or exploding gradient problem is a well known issue associated with these challenges. One approach to addressing vanishing and exploding gradients is to use either soft or hard constraints on weight matrices so as to encourage or enforce orthogonality. Orthogonal matrices preserve gradient norm during backpropagation and may therefore be a desirable property. This paper explores issues with optimization convergence, speed and gradient stability when encouraging or enforcing orthogonality. To perform this analysis, we propose a weight matrix factorization and parameterization strategy through which we can bound matrix norms and therein control the degree of expansivity induced during backpropagation. We find that hard constraints on orthogonality can negatively affect the speed of convergence and model performance.
Generative Adversarial Networks (GANs) are a powerful framework for deep generative modeling. Pos... more Generative Adversarial Networks (GANs) are a powerful framework for deep generative modeling. Posed as a two-player minimax problem, GANs are typically trained end-to-end on real-valued data and can be used to train a generator of high-dimensional and realistic images. However, a major limitation of GANs is that training relies on passing gradients from the discriminator through the generator via back-propagation. This makes it fundamentally difficult to train GANs with discrete data, as generation in this case typically involves a non-differentiable function. These difficulties extend to the reinforcement learning setting when the action space is composed of discrete decisions. We address these issues by reframing the GAN framework so that the generator is no longer trained using gradients through the discriminator, but is instead trained using a learned critic in the actor-critic framework with a Temporal Difference (TD) objective. This is a natural fit for sequence modeling and w...
We present an unsupervised approach for learning to estimate three dimensional (3D) facial struct... more We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicting 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial keypoints of an input image in an unsupervised manner, without using any form of ground-truth depth information. We show how it is possible to use these depths as intermediate computations within a new backpropable loss to predict the parameters of a 3D affine transformation matrix that maps inferred 3D keypoints of an input face to the corresponding 2D keypoints on a desired target facial geometry or pose. Our resulting approach, called DepthNets, can therefore be used to infer plausible 3D transformations from one face pose to another, allowing faces to be frontalized, transformed into 3D models or even warped to another pose and facial geometry. Lastly, we identify certain shortcomings with our formulation, and explo...
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions... more Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of...
Learning long-term dependencies in extended temporal sequences requires credit assignment to even... more Learning long-term dependencies in extended temporal sequences requires credit assignment to events far back in the past. The most common method for training recurrent neural networks, back-propagation through time (BPTT), requires credit information to be propagated backwards through every single step of the forward computation, potentially over thousands or millions of time steps. This becomes computationally expensive or even infeasible when used with long sequences. Importantly, biological brains are unlikely to perform such detailed reverse replay over very long sequences of internal states (consider days, months, or years.) However, humans are often reminded of past memories or mental states which are associated with the current mental state. We consider the hypothesis that such memory associations between past and present could be used for credit assignment through arbitrarily long sequences, propagating the credit assigned to the current state to the associated past state. B...
Recent progress in deep generative models has been fueled by two paradigms -- autoregressive and ... more Recent progress in deep generative models has been fueled by two paradigms -- autoregressive and adversarial models. We propose a combination of both approaches with the goal of learning generative models of text. Our method first produces a high-level sentence outline and then generates words sequentially, conditioning on both the outline and the previous outputs. We generate outlines with an adversarial model trained to approximate the distribution of sentences in a latent space induced by general-purpose sentence encoders. This provides strong, informative conditioning for the autoregressive stage. Our quantitative evaluations suggests that conditioning information from generated outlines is able to guide the autoregressive model to produce realistic samples, comparable to maximum-likelihood trained language models, even at high temperatures with multinomial sampling. Qualitative results also demonstrate that this generative procedure yields natural-looking sentences and interpol...
We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "bac... more We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given sequence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task.
Uploads
Papers by joseph pal