Papers by Ysander von Boxberg
The Journal of Neuroscience the Official Journal of the Society For Neuroscience, Apr 1, 2000
Polysialic acid-neural cell adhesion molecule (PSA-NCAM) expression in the adult nervous system i... more Polysialic acid-neural cell adhesion molecule (PSA-NCAM) expression in the adult nervous system is restricted to regions retaining a capacity for morphological plasticity. For the female rat hypothalamoneurohypophysial system (HNS), we have previously shown that lactation induces a dramatic decrease in PSA-NCAM, while leaving the level of total NCAM protein unchanged. Here, we wanted to elucidate the molecular mechanisms leading to a downregulation of PSA, thereby stabilizing newly established synapses and neurohemal contacts that accompany the increased activity of oxytocinergic neurons.

Development (Cambridge, England), 1993
In the rat, a small subpopulation of retinal ganglion cell axons forms a persistent projection to... more In the rat, a small subpopulation of retinal ganglion cell axons forms a persistent projection to the ipsilateral half of the brain. These fibres originate almost exclusively from the ventrotemporal margin of the retina. In contrast to all other retinal axons they seem to be deflected from the midline of the optic chiasm and thereby led into the ipsilateral optic tract. In order to analyse the interactions between growing fibres and chiasm midline, we have developed the following in vitro model. Axons of the embryonic rat retina are grown on a carpet of tectal cell membranes used as a general growth-permissive substratum. At a certain distance from the explant (200-450 microns), the advancing fibres are confronted with two stripes of cell membranes prepared from the chiasm midline. Such chiasm membranes are shown to act as a barrier for the presumptive non-crossing axons, while they do not influence growth of fibres originating from any other regions of the retina, including the dor...

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000
Polysialic acid-neural cell adhesion molecule (PSA-NCAM) expression in the adult nervous system i... more Polysialic acid-neural cell adhesion molecule (PSA-NCAM) expression in the adult nervous system is restricted to regions retaining a capacity for morphological plasticity. For the female rat hypothalamoneurohypophysial system (HNS), we have previously shown that lactation induces a dramatic decrease in PSA-NCAM, while leaving the level of total NCAM protein unchanged. Here, we wanted to elucidate the molecular mechanisms leading to a downregulation of PSA, thereby stabilizing newly established synapses and neurohemal contacts that accompany the increased activity of oxytocinergic neurons. First, we show that the overall specific activity of polysialyltransferases present in tissue extracts from supraoptic nuclei decreases by approximately 50% during lactation. So far, two polysialyltransferase enzymes, STX and PST, have been characterized for their capacity to transfer PSA onto NCAM in vitro. Using a competitive RT-PCR on RNA extracts from the HNS, we demonstrate furthermore a signi...

Development (Cambridge, England), 1998
Brain pattern formation starts with a subdivision of the neuroepithelium through site-specific ex... more Brain pattern formation starts with a subdivision of the neuroepithelium through site-specific expression of regulatory genes and, subsequently, the boundaries between presumptive neuromeres may provide a scaffold for early formation of axon tracts. In the mouse forebrain, the transcription factor OTX2 is strongly expressed at several such boundaries. Combining dye tracing and staining for OTX2 protein, we show that a number of early fibre tracts develop within stripes of OTX2 expression. To analyse a putative influence of OTX2 on the expression of molecules involved in neurite growth, we generated several clones of NIH3T3 cells stably expressing OTX2 protein at varying levels. As shown by immunoblotting, Otx2 transfection affects the expression of a variety of cell and substratum adhesion molecules, rendering the cells a favourable substratum in neurite outgrowth assays. Among the molecules upregulated with increasing levels of OTX2 are NCAM, tenascin-C and DSD-1-PG, which also in ...

The European journal of neuroscience, 1997
Post-transcriptional modification of the neural cell adhesion molecule (NCAM) by polysialic acid ... more Post-transcriptional modification of the neural cell adhesion molecule (NCAM) by polysialic acid significantly decreases NCAM adhesiveness and more generally modifies cell-cell interactions. Polysialic acid-NCAM (PSA-NCAM) is mainly expressed in the developing nervous system. In the adult, its expression is restricted to regions that retain morphological plasticity, such as the hypothalamo-neurohypophysial system during lactation in rats. Since cell-cell interactions and synaptic contacts in the hypothalamo-neurohypophysial system are greatly increased during lactation, we examined whether PSA-NCAM expression is modified during this period. Immunohistochemistry and immunoblotting showed that, compared with virgin rats, PSA-NCAM dramatically decreased during lactation in both the supraoptic nuclei and the neurohypophysis, and returned to its initial level only after weaning. This decrease was progressive and became significant only at the end of the first week of lactation. By contra...

Glia, 2014
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and... more The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.

Development (Cambridge, England), 1990
The skin of the white mutant axolotl larva is pigmented differently from that of the normal dark ... more The skin of the white mutant axolotl larva is pigmented differently from that of the normal dark due to a local inability of the extracellular matrix (ECM) to support subepidermal migration of neural crest-derived pigment cell precursors. In the present study, we have compared the ECM of neural crest migratory pathways of normal dark and white mutant embryos ultrastructurally, immunohistochemically and biochemically to disclose differences in their structure/composition that could be responsible for the restriction of subepidermal neural crest cell migration in the white mutant axolotl. When examined by electron microscopy, in conjunction with computerized image analysis, the structural assembly of interstitial and basement membrane ECMs of the two embryos was found to be largely comparable. At stages of initial neural crest cell migration, however, fixation of the subepidermal ECM in situ with either Karnovsky-ruthenium red or with periodate-lysine-paraformaldehyde followed by ruth...
European journal of biochemistry / FEBS, Jan 20, 1990
We describe a method for the selective labelling, isolation and electrophoretic analysis of cell-... more We describe a method for the selective labelling, isolation and electrophoretic analysis of cell-surface molecules and extracellular matrix components. Intact tissues are reacted with activated esters of biotin and the labelled surface molecules identified on Western blots with horseradish-peroxidase-coupled or 35S-labelled streptavidin. Alternatively, the biotinylated proteins can be purified from tissue homogenates by affinity chromatography on an avidin-agarose column. Evidence is presented to show that this method is indeed specific for membrane and matrix components. Its practical application to embryonic neural tissues is demonstrated.

Reproductive biology and endocrinology : RB&E, Jan 11, 2003
We recently reported that immature porcine Leydig cells express both somatostatin (SRIF) and SRIF... more We recently reported that immature porcine Leydig cells express both somatostatin (SRIF) and SRIF receptor type-2 (sst-2) transcripts. The present study was therefore undertaken to assess whether SRIF might exert autocrine actions on these cells through sst2A receptor, one of the two sst2 isoforms known to exert important neuroendocrine and endocrine functions. Using a polyclonal antibody directed towards the C-terminal tail of the sst2A receptor subtype, receptor immunoreactivity was detected in a subpopulation of Leydig cells and spermatogonia. To address the physiological correlates of this expression we then studied the possible involvement of sst2 receptor in the regulation of testosterone secretion. Functional assays showed that the sst2 agonist octreotide inhibited both basal and hCG-stimulated testosterone secretion by testosterone pretreated Leydig cells. To assess whether sst2 receptor expression might be regulated by testosterone, we performed a semi-quantitative RT-PCR a...

Journal of Neuroscience, 2004
During development, microtubule-associated protein 1B (MAP1B) is one of the earliest MAPs, prefer... more During development, microtubule-associated protein 1B (MAP1B) is one of the earliest MAPs, preferentially localized in axons and growth cones, and plays a role in axonal outgrowth. Although generally downregulated in the adult, we have shown that MAP1B is constitutively highly expressed in adult dorsal root ganglia (DRGs) and associated with central sprouting and peripheral regeneration of these neurons. Mutant mice with a complete MAP1B null allele that survive until adulthood exhibit a reduced myelin sheath diameter and conductance velocity of peripheral axons and lack of the corpus callosum. Here, to determine the function of MAP1B in axonal regeneration, we used cultures of adult DRG explants and/or dissociated neurons derived from this map1b؊/؊ mouse line. Whereas the overall length of regenerating neurites lacking MAP1B was similar to wild-type controls, our analysis revealed two main defects. First, map1b؊/؊ neurites exhibited significantly (twofold) higher terminal and collateral branching. Second, the turning capacity of growth cones (i.e., "choice" of a proper orientation) was impaired. In addition, lack of MAP1B may affect the post-translational modification of tubulin polymers: quantitative analysis showed a reduced amount of acetylated microtubules within growth cones, whereas the distribution of tyrosinated or detyrosinated microtubules was normal. Both growth cone turning and axonal branch formation are known to involve local regulation of the microtubule network. Our results demonstrate that MAP1B plays a role in these processes during plastic changes in the adult. In particular, the data suggest MAP1B implication in the locally coordinated assembly of cytoskeletal components required for branching and straight directional axon growth.
European Journal of Biochemistry, 1992
Science, 1988
Membrane microcarriers were used to determine the ability of regional extracellular matrices to d... more Membrane microcarriers were used to determine the ability of regional extracellular matrices to direct neural crest cell differentiation in culture. Neural crest cells from the axolotl embryo responded to extracellular matrix material explanted from the subepidermal migratory pathway by dispersing and by differentiating into pigment cells. In contrast, matrix material from the presumptive site of dorsal root ganglia stimulated pronounced cell-cell association and neurotypic expression. Cell line segregation during ontogeny of the neural crest that leads to diversification into pigment cells of the skin or into elements of the peripheral nervous system appears to be controlled in part by local cell-matrix interactions.
Neuron, 1990
90)90227-7 · Source: PubMed CITATIONS 217 READS 23 5 authors, including: Some of the authors of t... more 90)90227-7 · Source: PubMed CITATIONS 217 READS 23 5 authors, including: Some of the authors of this publication are also working on these related projects: Monoclonal antibodies modifying iron homeostatsis View project Monoclonal RGM antibodies to treat MS, spinal cord injury and neurologic diseases View project Bernhard K Mueller AbbVie 59 PUBLICATIONS 4,409 CITATIONS SEE PROFILE

Journal of Neurotrauma, 2014
Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the... more Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study. Immediately after a spinal cord hemisection at thoracic level 8-9, we injected ChABC intrathecally at the sacral level, repeated three times until 10 days post-injury. Our results show an effective cleavage of CSPG glycosaminoglycan chains and stimulation of axonal remodeling within the injury site, accompanied by an extended period of astrocyte remodeling (up to 4 weeks). Interestingly, ChABC treatment favored an orientation of astrocytic processes directed toward the injury, in close association with axons at the lesion entry zone, suggesting a correlation between axon and astrocyte remodeling. Further, during the first weeks post-injury, ChABC treatment affected the morphology of laminin-positive blood vessel basement membranes and vessel-independent laminin deposits: hypertrophied blood vessels with detached or duplicated basement membrane were more numerous than in lesioned untreated animals. In contrast, at later time points, laminin expression increased and became more directly associated with newly formed blood vessels, the size of which tended to be closer to that found in intact tissue. Our data reinforce the idea that ChABC injection in combination with other synergistic treatments is a promising therapeutic strategy for SCI repair.

Journal of Neurotrauma, 2009
The molecular mechanisms triggering microglial activation after injury to the central nervous sys... more The molecular mechanisms triggering microglial activation after injury to the central nervous system, involving cell-extracellular matrix interactions and cytokine signaling, are not yet fully understood. Here, we report that resident microglia in spinal cord express low levels of the non-integrin laminin receptor precursor (LRP), also found on certain neurons and glial cells in the peripheral nervous system. 37LRP/p40 and its 67-kDa isoform laminin receptor (LR) were the first high-affinity laminin binding proteins identified. While the role of laminin receptor was later attributed to integrins, LRP/LR gained new interest as receptors for prions, and their interaction with laminin seems important for migration of metastatic cancer cells. Using immunohistochemistry and Western blotting, we demonstrate that traumatic spinal cord injury leads to a strong and rapid increase in LRP levels in relation to activated microglia/macrophages. Associated with laminin re-expression in the lesion epicenter, LRP-positive microglia/macrophages exhibit a rounded, ameboid-like shape characteristic of phagocytic cells, whereas in more distant loci they reveal a hypertrophied cell body and short ramifications. The same morphological difference is observed in vitro for purified microglia cultured with or without laminin. Strong, transient upregulation of LRP by activated spinal cord microglia is also induced by transection of the sciatic nerve that affects the spinal cord circuitry without blood-brain barrier dysruption. LRP expression is maximal by 1 week post-lesion, before becoming restricted to dorsal and ventral horns, sites of major structural reorganization. Our findings strongly suggest the involvement of LRP in lesion-induced activation and migration of microglia.

Glia, 2009
Within the nervous system, expression of the intriguing giant protein AHNAK had been reported so ... more Within the nervous system, expression of the intriguing giant protein AHNAK had been reported so far only for blood-brain barrier forming vascular endothelium. In a screen for genes upregulated after spinal cord injury, we recently identified ahnak as being highly expressed by non-neuronal cells invading the lesion, delimiting the interior surface of cystic cavities in front of barrier-forming astrocytes. Here, we show for the first time that AHNAK is constitutively expressed in peripheral nervous system, notably by myelinating Schwann cells (SCs), in which we investigated its function. During sciatic nerve development, AHNAK is redistributed from adaxonal toward abaxonal SC compartments in contact with basement membrane. AHNAK labeling on myelinated fibers from adult nerve delineates the so-called "Cajal bands," constituting the residual peripheral SC cytoplasm. Its distribution pattern is complementary to that of periaxin, known to be involved in the myelination process. In vitro, nonconfluent cultured primary SCs seeded on laminin express high levels of AHNAK concentrated in their processes, whereas at confluence, AHNAK is downregulated together with laminin receptor dystroglycan. AHNAK silencing by siRNA interference affects SC morphology and laminin-substrate attachment, as well as expression and distribution of dystroglycan. Thus, our results clearly show the implication of AHNAK in SC adhesion to laminin, probably via targeting of the dystroglycan-associated receptor complex. These findings are of high interest regarding the importance of SC-basal lamina interactions for myelination and myelin maintenance, and open up new perspectives for investigations of the molecular mechanisms underlying demyelinating neuropathies.

European Journal of Neuroscience, 2002
A peripheral nerve lesion induces sprouting of primary afferents from dorsal root ganglion (DRG) ... more A peripheral nerve lesion induces sprouting of primary afferents from dorsal root ganglion (DRG) neurons into lamina II of the dorsal horn. Modi®cations of the environment in consequence to the axotomy provide an extrinsic stimulus. A potential neuron-intrinsic factor that may permit axonal sprouting is microtubule-associated protein 1B (MAP1B) in a speci®c phosphorylated form (MAP1B-P), restricted to growing or regenerating axons. We show here that both in rat and mouse, a sciatic nerve cut is rapidly followed by the appearance of MAP1B-P expression in lamina II, increasing to a maximum between 8 and 15 days, and diminishing after three months. Evidence is provided that sprouting and induction of MAP1B-P expression after peripheral injury are phenomena concerning essentially myelinated axons. This is in accordance with in situ hybridization data showing especially high MAP1B-mRNA levels in large size DRG neurons that give rise to myelinated ®bers. We then employed a second lesion model, multiple rhizotomy with one spared root. In this case, unmyelinated CGRP expressing ®bers do indeed sprout, but coexpression of MAP1B-P and CGRP is never observed in lamina II. Finally, because a characteristic of myelinated ®bers is their high content in neuro®lament protein heavy subunit (NF-H), we used NF-H-LacZ transgenic mice to verify that MAP1B-P induction and central sprouting were not affected by perturbing the axonal organization of neuro®laments. We conclude that MAP1B-P is well suited as a rapidly expressed, axon-intrinsic marker associated with plasticity of myelinated ®bers.
Uploads
Papers by Ysander von Boxberg