The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where ... more The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relap...
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing a wide variety of infectio... more Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing a wide variety of infections which range in seriousness. Treatment of S. aureus infections is challenging due its ability to a) form protective biofilms, b) survive intracellularly, and c) the emergence of resistant strains. Upon recovery, patients are at high risk of recurrent infection. We hypothesise that recurrent infection is due to the ability of S. aureus to evade the immune system and administered antibacterials by residing intracellularly. Therefore, the aim of this thesis is to develop a drug delivery strategy which can successfully deliver antibacterials intracellularly and in so doing eliminate the resident bacteria. In agreement with the literature we found that S. aureus internalises into endothelial cells, within 1 hour (HAoECs). Once internalised we also confirmed that S. aureus has the ability to re-emerge, and hence, in vivo may cause re-infection. Our next objective was to develop a drug delive...
The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where ... more The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relap...
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing a wide variety of infectio... more Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing a wide variety of infections which range in seriousness. Treatment of S. aureus infections is challenging due its ability to a) form protective biofilms, b) survive intracellularly, and c) the emergence of resistant strains. Upon recovery, patients are at high risk of recurrent infection. We hypothesise that recurrent infection is due to the ability of S. aureus to evade the immune system and administered antibacterials by residing intracellularly. Therefore, the aim of this thesis is to develop a drug delivery strategy which can successfully deliver antibacterials intracellularly and in so doing eliminate the resident bacteria. In agreement with the literature we found that S. aureus internalises into endothelial cells, within 1 hour (HAoECs). Once internalised we also confirmed that S. aureus has the ability to re-emerge, and hence, in vivo may cause re-infection. Our next objective was to develop a drug delive...
Uploads
Papers by Fajer Yousef