The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pl... more The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP–hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The “set-point” for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonr...
Collapsin response mediator proteins (CRMPs) are intracellular proteins that mediate signals for ... more Collapsin response mediator proteins (CRMPs) are intracellular proteins that mediate signals for several extracellular molecules, such as Semaphorin3A and neurotrophins. The phosphorylation of CRMP1 and CRMP2 by Cdk5 at Ser522 is involved in axonal guidance and spine development. Here, we found that the Ser522-phosphorylated CRMP1 and/or CRMP2 are enriched in the dendrites of cultured cortical neurons and P7 cortical section. To determine the physiological role of CRMPs in dendritic development, we generated CRMP2 knock-in mutant mice (crmp2 ki/ki) in which the Ser residue at 522 was replaced with Ala. Strikingly, the cortical basal dendrites of double mutant crmp2 ki/ki and crmp1 Ϫ/Ϫ mice exhibited severe abnormal dendritic patterning, which we defined as "curling phenotype." These findings demonstrate that the function of CRMP1 and CRMP2 synergistically control dendritic projection, and the phosphorylation of CRMP2 at Ser522 is essential for proper dendritic field organization in vivo.
Proceedings of the National Academy of Sciences of the United States of America, May 12, 2017
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pl... more The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including li...
Sneezing and persistent itching of the nasal mucosa are distressing symptoms of allergic rhinitis... more Sneezing and persistent itching of the nasal mucosa are distressing symptoms of allergic rhinitis (AR). Recent studies have revealed that hyperinnervation of sensory neurons in the nasal turbinate is one of the underlying causes of sneezing and itching. Since Semaphorin-3A (Sema3A) has been previously shown to restrict innervation of sensory neurons, it is presumed that reduced Sema3A expression in the nasal mucosa might contribute to the hypersensitivity. Analysis of the mouse model of ovalbumin-sensitized AR demonstrated a decreased expression of Sema3A in the nasal epithelium, which was accompanied by an increased nerve fiber density in the lamina propria of the turbinate. In rescue experiments, intranasal administration of recombinant Sema3A in the AR model mice alleviated sneezing and nasal rubbing symptoms. In addition, histological examinations also revealed that nerve fiber density was decreased in the lamina propria of the Sema3A-treated nasal turbinate. These results suggest that the nasal hypersensitivity of AR may be attributed to reduction of Sema3A expression and intranasal administration of Sema3A may provide a novel approach to alleviate the allergic symptoms for AR treatment.
Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing ... more Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing neurons. However, the molecular mechanisms of this process are still largely unknown. Neuronal calcium sensor-1 (NCS-1) is a high-affinity and low-capacity calcium binding protein, which is specifically expressed in the nervous system. NCS-1 was distributed throughout the entire region of growth cones located at a distal tip of neurite in cultured chick dorsal root ganglion neurons. In the central domain of the growth cone, however, NCS-1 was distributed in a clustered specific pattern and co-localized with the type 1 inositol 1,4,5-trisphosphate receptor (InsP 3 R1). The pharmacological inhibition of InsP 3 receptors decreased the clustered specific distribution of NCS-1 in the growth cones and inhibited neurite outgrowth but did not change the growth cone morphology. The acute and localized loss of NCS-1 function in the growth cone induced by chromophore-assisted laser inactivation (CALI) resulted in the growth arrest of neurites and lamellipodial and filopodial retractions. These findings suggest that NCS-1 is involved in the regulation of both neurite outgrowth and growth cone morphology. In addition, NCS-1 is functionally linked to InsP 3 R1, which may play an important role in the regulation of neurite outgrowth.
Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate h... more Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate here that semaphorin 3A (Sema3A) induces a coordinated rearrangement of Sema3A receptors and F-actin during growth cone collapse. Differential interference contrast microscopy reveals that some sites of Sema3Ainduced F-actin reorganization correlate with discrete vacuoles, structures involved in endocytosis. Endocytosis of FITC-dextran by the growth cone is enhanced during Sema3A treatment, and sites of dextran accumulation colocalize with actin-rich vacuoles and ridges of membrane. Furthermore, the Sema3A receptor proteins, neuropilin-1 and plexin, and the Sema3A signaling molecule, rac1, also reorganize to vacuoles and membrane ridges after Sema3A treatment. These data support a model whereby Sema3A stimulates endocytosis by focal and coordinated rearrangement of receptor and cytoskeletal elements. Dextran accumulation is also increased in retinal ganglion cell (RGC) growth cones, in response to ephrin A5, and in RGC and DRG growth cones, in response to myelin and phorbol-ester. Therefore, enhanced endocytosis may be a general principle of physiologic growth cone collapse. We suggest that growth cone collapse is mediated by both actin filament rearrangements and alterations in membrane dynamics.
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pl... more The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP–hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The “set-point” for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonr...
Collapsin response mediator proteins (CRMPs) are intracellular proteins that mediate signals for ... more Collapsin response mediator proteins (CRMPs) are intracellular proteins that mediate signals for several extracellular molecules, such as Semaphorin3A and neurotrophins. The phosphorylation of CRMP1 and CRMP2 by Cdk5 at Ser522 is involved in axonal guidance and spine development. Here, we found that the Ser522-phosphorylated CRMP1 and/or CRMP2 are enriched in the dendrites of cultured cortical neurons and P7 cortical section. To determine the physiological role of CRMPs in dendritic development, we generated CRMP2 knock-in mutant mice (crmp2 ki/ki) in which the Ser residue at 522 was replaced with Ala. Strikingly, the cortical basal dendrites of double mutant crmp2 ki/ki and crmp1 Ϫ/Ϫ mice exhibited severe abnormal dendritic patterning, which we defined as "curling phenotype." These findings demonstrate that the function of CRMP1 and CRMP2 synergistically control dendritic projection, and the phosphorylation of CRMP2 at Ser522 is essential for proper dendritic field organization in vivo.
Proceedings of the National Academy of Sciences of the United States of America, May 12, 2017
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pl... more The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including li...
Sneezing and persistent itching of the nasal mucosa are distressing symptoms of allergic rhinitis... more Sneezing and persistent itching of the nasal mucosa are distressing symptoms of allergic rhinitis (AR). Recent studies have revealed that hyperinnervation of sensory neurons in the nasal turbinate is one of the underlying causes of sneezing and itching. Since Semaphorin-3A (Sema3A) has been previously shown to restrict innervation of sensory neurons, it is presumed that reduced Sema3A expression in the nasal mucosa might contribute to the hypersensitivity. Analysis of the mouse model of ovalbumin-sensitized AR demonstrated a decreased expression of Sema3A in the nasal epithelium, which was accompanied by an increased nerve fiber density in the lamina propria of the turbinate. In rescue experiments, intranasal administration of recombinant Sema3A in the AR model mice alleviated sneezing and nasal rubbing symptoms. In addition, histological examinations also revealed that nerve fiber density was decreased in the lamina propria of the Sema3A-treated nasal turbinate. These results suggest that the nasal hypersensitivity of AR may be attributed to reduction of Sema3A expression and intranasal administration of Sema3A may provide a novel approach to alleviate the allergic symptoms for AR treatment.
Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing ... more Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing neurons. However, the molecular mechanisms of this process are still largely unknown. Neuronal calcium sensor-1 (NCS-1) is a high-affinity and low-capacity calcium binding protein, which is specifically expressed in the nervous system. NCS-1 was distributed throughout the entire region of growth cones located at a distal tip of neurite in cultured chick dorsal root ganglion neurons. In the central domain of the growth cone, however, NCS-1 was distributed in a clustered specific pattern and co-localized with the type 1 inositol 1,4,5-trisphosphate receptor (InsP 3 R1). The pharmacological inhibition of InsP 3 receptors decreased the clustered specific distribution of NCS-1 in the growth cones and inhibited neurite outgrowth but did not change the growth cone morphology. The acute and localized loss of NCS-1 function in the growth cone induced by chromophore-assisted laser inactivation (CALI) resulted in the growth arrest of neurites and lamellipodial and filopodial retractions. These findings suggest that NCS-1 is involved in the regulation of both neurite outgrowth and growth cone morphology. In addition, NCS-1 is functionally linked to InsP 3 R1, which may play an important role in the regulation of neurite outgrowth.
Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate h... more Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate here that semaphorin 3A (Sema3A) induces a coordinated rearrangement of Sema3A receptors and F-actin during growth cone collapse. Differential interference contrast microscopy reveals that some sites of Sema3Ainduced F-actin reorganization correlate with discrete vacuoles, structures involved in endocytosis. Endocytosis of FITC-dextran by the growth cone is enhanced during Sema3A treatment, and sites of dextran accumulation colocalize with actin-rich vacuoles and ridges of membrane. Furthermore, the Sema3A receptor proteins, neuropilin-1 and plexin, and the Sema3A signaling molecule, rac1, also reorganize to vacuoles and membrane ridges after Sema3A treatment. These data support a model whereby Sema3A stimulates endocytosis by focal and coordinated rearrangement of receptor and cytoskeletal elements. Dextran accumulation is also increased in retinal ganglion cell (RGC) growth cones, in response to ephrin A5, and in RGC and DRG growth cones, in response to myelin and phorbol-ester. Therefore, enhanced endocytosis may be a general principle of physiologic growth cone collapse. We suggest that growth cone collapse is mediated by both actin filament rearrangements and alterations in membrane dynamics.
Uploads
Papers by Yoshio Goshima