Age-related differences in grey matter of children with high function autism and Asperger's syndr... more Age-related differences in grey matter of children with high function autism and Asperger's syndrome,
Light is considered to modulate human brain function only via the retinal pathway, a way of think... more Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magnetic resonance imaging during bright light stimulus via the ear canal. Lateral visual and sensorimotor networks showed increased functional connectivity in the light stimulus group compared to sham controls. The lateral visual network demonstrated slowly increasing functional connectivity on average and the same temporal characteristic was shared by diverse cerebellar brain regions. Hypothetical phototransduction signal pathways leading to responses in brain function are discussed as well as some observed effects and their possible link to the findings. Findings from this study together with the plausible photoreceptor candidates suggest that the brain possesses photosensitive properties, which will have interesting implications for the modulation of brain function and understanding the basic physiology of the brain.
Sleep is known to increase the convection of interstitial brain metabolites along with cerebrospi... more Sleep is known to increase the convection of interstitial brain metabolites along with cerebrospinal fluid (CSF). We used ultrafast magnetic resonance encephalography (MREGBOLD) to quantify the effect of sleep on physiological (vasomotor, respiratory and cardiac) brain pulsations driving the CSF convection in humans. Transition to electroencephalography verified sleep occurred in conjunction with power increase and reduced spectral entropy (SE) of physiological brain pulsations. During sleep, the greatest increase in spectral power was in very-low frequency (VLF < 0.1 Hz) waves, followed by respiratory and cardiac brain pulsations. SE reduction coincided with decreased vigilance in awake state and could robustly (ROC 0.88, p < 0.001) differentiate between sleep vs. awake states, indicating the sensitivity of SE of the MREGBOLD signal as a marker for sleep level. In conclusion, the three physiological brain pulsation contribute to the sleep-associated increase in glymphatic CSF...
Background: Physiological brain pulsations have been shown to play a key role in maintaining inte... more Background: Physiological brain pulsations have been shown to play a key role in maintaining interstitial homeostasis in the glymphatic brain clearance mechanism. We investigated whether psychotic symptomatology is related to physiological variation of the human brain using fMRI. Methods: The participants (N=277) were from the Northern Finland Birth Cohort 1986. Psychotic symptoms were evaluated with the Positive Symptoms Scale of the Structured Interview for Prodromal Syndromes (SIPS). We used coefficient of variation of BOLD signal (CVBOLD) as a proxy for physiological brain pulsatility. The CVBOLD-analyses were controlled for motion, age, sex, and educational level. The results were also compared with fMRI and voxel-based morphometry (VBM) meta-analyses of schizophrenia patients (data from the Brainmap database). Results: At the global level, participants with psychotic-like symptoms had higher CVBOLD in cerebrospinal fluid (CSF) and white matter (WM), when compared to participan...
Near-infrared spectroscopy (fNIRS) measures concentrations of oxygenated (HbO) and deoxygenated (... more Near-infrared spectroscopy (fNIRS) measures concentrations of oxygenated (HbO) and deoxygenated (HbR) hemoglobin in the brain. Recently, we demonstrated its potential also for measuring concentrations of cerebral water ( $$\hbox {cH}_{2}\hbox {O}$$ ). We performed fNIRS measurements during rest to study fluctuations in concentrations of $$\hbox {cH}_{2}\hbox {O}$$ , HbO and HbR in 33 well-rested healthy control subjects (HC) and 18 acutely sleep-deprived HC. Resting-state fNIRS signal was filtered in full-band, cardiac, respiratory, low-, and very-low-frequency bands. The sum of HbO and HbR constitutes the regional cerebral blood volume (CBV). CBV and $$\hbox {cH}_{2}\hbox {O}$$ concentrations were analyzed via temporal correlation and phase synchrony. Fluctuation in concentrations of $$\hbox {cH}_{2}\hbox {O}$$ and CBV was strongly anti-correlated across all frequency bands in both frontal and parietal cortices. Fluctuation in concentrations of $${\hbox {cH}}_{2}{\hbox {O}}$$ and C...
Accumulation of amyloid-β is a key neuropathological feature in brain of Alzheimer’s disease pati... more Accumulation of amyloid-β is a key neuropathological feature in brain of Alzheimer’s disease patients. Alterations in cerebral haemodynamics, such as arterial impulse propagation driving the (peri)vascular CSF flux, predict future Alzheimer’s disease progression. We now present a non-invasive method to quantify the three-dimensional propagation of cardiovascular impulses in human brain using ultrafast 10 Hz magnetic resonance encephalography. This technique revealed spatio-temporal abnormalities in impulse propagation in Alzheimer’s disease. The arrival latency and propagation speed both differed in patients with Alzheimer’s disease. Our mapping of arterial territories revealed Alzheimer’s disease-specific modifications, including reversed impulse propagation around the hippocampi and in parietal cortical areas. The findings imply that pervasive abnormality in (peri)vascular CSF impulse propagation compromises vascular impulse propagation and subsequently glymphatic brain clearance ...
Biomarkers sensitive to prodromal or early pathophysiological changes in Alzheimer’s disease (AD)... more Biomarkers sensitive to prodromal or early pathophysiological changes in Alzheimer’s disease (AD) symptoms could improve disease detection and enable timely interventions. Changes in brain hemodynamics may be associated with the main clinical AD symptoms. To test this possibility, we measured the variability of blood oxygen level-dependent (BOLD) signal in individuals from three independent datasets (totaling 80 AD patients and 90 controls). We detected a replicable increase in brain BOLD signal variability in the AD populations, which constituted a robust biomarker for clearly differentiating AD cases from controls. Fast BOLD scans showed that the elevated BOLD signal variability in AD arises mainly from cardiovascular brain pulsations. Manifesting in abnormal cerebral perfusion and cerebrospinal fluid convection, present observation presents a mechanism explaining earlier observations of impaired glymphatic clearance associated with AD in humans.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
This is an open access article under the terms of the Creative Commons Attribution License, which... more This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Both functional magnetic resonance imaging (fMRI) and electrophysiological recordings have reveal... more Both functional magnetic resonance imaging (fMRI) and electrophysiological recordings have revealed that resting-state functional connectivity is temporally variable in human brain. Combined full-band electroencephalography-fMRI (fbEEG-fMRI) studies have shown that infraslow (<.1 Hz) fluctuations in EEG scalp potential are correlated with the blood-oxygen-level-dependent (BOLD) fMRI signals and that also this correlation appears variable over time. Here, we used simultaneous fbEEG-fMRI to test the hypothesis that correlation dynamics between BOLD and fbEEG signals could be explained by fluctuations in the activation properties of resting-state networks (RSNs) such as the extent or strength of their activation. We used ultrafast magnetic resonance encephalography (MREG) fMRI to enable temporally accurate and statistically robust short-time-window comparisons of infra-slow fbEEG and BOLD signals. We found that the temporal fluctuations in the fbEEG-BOLD correlation were dependent o...
Fluctuations in brain water content has attracted increasing interest, particularly as regards st... more Fluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS). We demonstrate the possibility to sense dynamic variations of water content between the skull and grey matter, for instance, in the subarachnoid space. Measured fluctuations in water content, especially in the cerebrospinal fluid (CSF), are assumed to be correlated with the dynamics of glymphatic circulation. The sampling volume for the NIRS optode was estimated by Monte Carlo modelling for the wavelengths of 660, 740, 830 and 980 nm. In addition, using combinations of these wavelengths, this article presents the calculation models for quantifying water and haemodynamics. The presented NIRS technique allows long-term functional brain monitoring, including sleeping time. Furthermore, it is used in combination with different magnetic neuroimaging techniques, particularly magnetic resonance encephalography. Using the combined setup, we report the preliminary results on the interaction between CSF and blood oxygen level-dependent fluctuations.
High doses of antipsychotics have been associated with loss in cortical and total gray matter in ... more High doses of antipsychotics have been associated with loss in cortical and total gray matter in schizophrenia. However, previous imaging studies have not taken benzodiazepine use into account, in spite of evidence suggesting adverse effects such as cognitive impairment and increased mortality. In this Northern Finland Birth Cohort 1966 study, 69 controls and 38 individuals with schizophrenia underwent brain MRI at the ages of 34 and 43 years. At baseline, the average illness duration was over 10 years. Brain structures were delineated using an automated volumetry system, volBrain, and medication data on cumulative antipsychotic and benzodiazepine doses were collected using medical records and interviews. We used linear regression with intracranial volume and sex as covariates; illness severity was also taken into account. Though both medication doses associated to volumetric changes in subcortical structures, after adjusting for each other and the average PANSS total score, higher ...
Early stressors play a key role in shaping interindividual differences in vulnerability to variou... more Early stressors play a key role in shaping interindividual differences in vulnerability to various psychopathologies, which according to the diathesis-stress model might relate to the elevated glucocorticoid secretion and impaired responsiveness to stress. Furthermore, previous studies have shown that individuals exposed to early adversity have deficits in emotion processing from faces. This study aims to explore whether early adversities associate with brain response to faces and whether this association might associate with the regional variations in mRNA expression of the glucocorticoid receptor gene (NR3C1). A total of 104 individuals drawn from the Northern Finland Brith Cohort 1986 participated in a face-task functional magnetic resonance imaging (fMRI) study. A large independent dataset (IMAGEN, N = 1739) was utilized for reducing fMRI data-analytical space in the NFBC 1986 dataset. Early adversities were associated with deviant brain response to fearful faces (MANCOVA, P = 0...
Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may... more Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD gr...
Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with met... more Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with methods that can provide a metabolic dimension to MEG investigations. In addition, continuous blood pressure measurements which comply with MEG compatibility requirements are lacking. For instance, by combining methods reflecting neurovascular status one could obtain more information on low frequency fluctuations that have recently gained increasing interest as a mediator of functional connectivity within brain networks. This paper presents a multimodal brain imaging setup, capable to non-invasively and continuously measure cerebral hemodynamic, cardiorespiratory and blood pressure oscillations simultaneously with MEG. In the setup, all methods apart from MEG rely on the use of fibre optics. In particular, we present a method for measuring of blood pressure and cardiorespiratory oscillations continuously with MEG. The potential of this type of multimodal setup for brain research is demonstrated by our preliminary studies on human, showing effects of mild hypercapnia, gathered simultaneously with the presented modalities. Combining different brain imaging techniques enables us to study the causality between complex neurological mechanisms and variables. For instance, an increase in neuronal activity causes a metabolic demand for glucose and oxygen, which increases cerebral blood flow to the active brain region. This kind of process is impossible to study accurately by any single imaging modality, but requires simultaneous use of hemodynamic and electromagnetic based imaging techniques. In consequence, multimodal imaging, such as electroencephalogram (EEG) with magnetoencephalography (MEG) or functional magnetic resonance imaging (fMRI) is a common practice in modern day neuroimaging. In addition, such imaging techniques would draw an advantage if cardiovascular and cerebral hemodynamic related signals are recorded comprehensive and in synchrony. This would extend our possibilities to acquire detailed knowledge of the functional interconnections between the brain and other organs and, for example, to study autoregulation of blood pressure (BP). MEG, closely related to EEG, measures the magnetic fields created by the electric currents, whereas EEG measures electric potentials by electrodes placed at certain points on the scalp. The main difference between the sources of EEG and MEG signals is that MEG only picks signals from the dendrites tangential to the head surface. Both of these methods can directly measure neuronal activity with a time resolution of less than one millisecond and with a high amount of channels, commonly MEG from 100 to 300 1. In general, EEG has a relatively modest spatial resolution, on the centimetre scale, whereas MEG has a higher spatial accuracy, few millimetres
Until now, melanopsin (OPN4) - a specialized photopigment being responsive especially to blue lig... more Until now, melanopsin (OPN4) - a specialized photopigment being responsive especially to blue light wavelengths - has not been found in the human brain at protein level outside the retina. More specifically, OPN4 has only been found in about 2% of retinal ganglion cells (i.e. in intrinsically photosensitive retinal ganglion cells), and in a subtype of retinal cone-cells. Given that Allen Institute for Brain Science has described a wide distribution of OPN4 mRNA in two human brains, we aimed to investigate whether OPN4 is present in the human brain also at protein level. Western blotting and immunohistochemistry, as well as immunoelectron microscopy, were used to analyse the existence and distribution of OPN4 protein in 18 investigated areas of the human brain in samples obtained in forensic autopsies from 10 male subjects (54 ± 3.5 years). OPN4 protein expression was found in all subjects, and, furthermore, in 5 out of 10 subjects in all investigated brain areas localized in membranous compartments and cytoplasmic vesicles of neurons. To our opinion, the wide distribution of OPN4 in central areas of the human brain evokes a question whether ambient light has important straight targets in the human brain outside the retinohypothalamic tract (RHT). Further studies are, however, needed to investigate the putative physiological phototransductive actions of inborn OPN4 protein outside the RHT in the human brain.
Antipsychotic medications and psychotic illness related factors may affect both weight and brain ... more Antipsychotic medications and psychotic illness related factors may affect both weight and brain structure in people with psychosis. Genetically high-risk individuals offer an opportunity to study the relationship between body mass index (BMI) and brain structure free from these potential confounds. We examined the effect of BMI on white matter (WM) microstructure in subjects with familial risk for psychosis (FR). We used diffusion tensor imaging and tract-based spatial statistics to explore the effect of BMI on whole brain FA in 42 (13 males) participants with FR and 46 (16 males) control participants aged 20-25 years drawn from general population-based Northern Finland Birth Cohort 1986. We also measured axial, radial and mean diffusivities. Most of the participants were normal weight rather than obese. In the FR group, decrease in fractional anisotropy and increase in radial diffusivity were associated with an increase in BMI in several brain areas. In controls the opposite pattern was seen in participants with higher BMI. There was a statistically significant interaction between group and BMI on FA and radial and mean diffusivities. Our results suggest that the effect of BMI on WM differs between individuals with FR for psychosis and controls.
ABSTRACT A non-invasive device for measuring blood oxygen variations in human brain is designed, ... more ABSTRACT A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source — detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, Jun 21, 2015
The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsa... more The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz)...
Age-related differences in grey matter of children with high function autism and Asperger's syndr... more Age-related differences in grey matter of children with high function autism and Asperger's syndrome,
Light is considered to modulate human brain function only via the retinal pathway, a way of think... more Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magnetic resonance imaging during bright light stimulus via the ear canal. Lateral visual and sensorimotor networks showed increased functional connectivity in the light stimulus group compared to sham controls. The lateral visual network demonstrated slowly increasing functional connectivity on average and the same temporal characteristic was shared by diverse cerebellar brain regions. Hypothetical phototransduction signal pathways leading to responses in brain function are discussed as well as some observed effects and their possible link to the findings. Findings from this study together with the plausible photoreceptor candidates suggest that the brain possesses photosensitive properties, which will have interesting implications for the modulation of brain function and understanding the basic physiology of the brain.
Sleep is known to increase the convection of interstitial brain metabolites along with cerebrospi... more Sleep is known to increase the convection of interstitial brain metabolites along with cerebrospinal fluid (CSF). We used ultrafast magnetic resonance encephalography (MREGBOLD) to quantify the effect of sleep on physiological (vasomotor, respiratory and cardiac) brain pulsations driving the CSF convection in humans. Transition to electroencephalography verified sleep occurred in conjunction with power increase and reduced spectral entropy (SE) of physiological brain pulsations. During sleep, the greatest increase in spectral power was in very-low frequency (VLF < 0.1 Hz) waves, followed by respiratory and cardiac brain pulsations. SE reduction coincided with decreased vigilance in awake state and could robustly (ROC 0.88, p < 0.001) differentiate between sleep vs. awake states, indicating the sensitivity of SE of the MREGBOLD signal as a marker for sleep level. In conclusion, the three physiological brain pulsation contribute to the sleep-associated increase in glymphatic CSF...
Background: Physiological brain pulsations have been shown to play a key role in maintaining inte... more Background: Physiological brain pulsations have been shown to play a key role in maintaining interstitial homeostasis in the glymphatic brain clearance mechanism. We investigated whether psychotic symptomatology is related to physiological variation of the human brain using fMRI. Methods: The participants (N=277) were from the Northern Finland Birth Cohort 1986. Psychotic symptoms were evaluated with the Positive Symptoms Scale of the Structured Interview for Prodromal Syndromes (SIPS). We used coefficient of variation of BOLD signal (CVBOLD) as a proxy for physiological brain pulsatility. The CVBOLD-analyses were controlled for motion, age, sex, and educational level. The results were also compared with fMRI and voxel-based morphometry (VBM) meta-analyses of schizophrenia patients (data from the Brainmap database). Results: At the global level, participants with psychotic-like symptoms had higher CVBOLD in cerebrospinal fluid (CSF) and white matter (WM), when compared to participan...
Near-infrared spectroscopy (fNIRS) measures concentrations of oxygenated (HbO) and deoxygenated (... more Near-infrared spectroscopy (fNIRS) measures concentrations of oxygenated (HbO) and deoxygenated (HbR) hemoglobin in the brain. Recently, we demonstrated its potential also for measuring concentrations of cerebral water ( $$\hbox {cH}_{2}\hbox {O}$$ ). We performed fNIRS measurements during rest to study fluctuations in concentrations of $$\hbox {cH}_{2}\hbox {O}$$ , HbO and HbR in 33 well-rested healthy control subjects (HC) and 18 acutely sleep-deprived HC. Resting-state fNIRS signal was filtered in full-band, cardiac, respiratory, low-, and very-low-frequency bands. The sum of HbO and HbR constitutes the regional cerebral blood volume (CBV). CBV and $$\hbox {cH}_{2}\hbox {O}$$ concentrations were analyzed via temporal correlation and phase synchrony. Fluctuation in concentrations of $$\hbox {cH}_{2}\hbox {O}$$ and CBV was strongly anti-correlated across all frequency bands in both frontal and parietal cortices. Fluctuation in concentrations of $${\hbox {cH}}_{2}{\hbox {O}}$$ and C...
Accumulation of amyloid-β is a key neuropathological feature in brain of Alzheimer’s disease pati... more Accumulation of amyloid-β is a key neuropathological feature in brain of Alzheimer’s disease patients. Alterations in cerebral haemodynamics, such as arterial impulse propagation driving the (peri)vascular CSF flux, predict future Alzheimer’s disease progression. We now present a non-invasive method to quantify the three-dimensional propagation of cardiovascular impulses in human brain using ultrafast 10 Hz magnetic resonance encephalography. This technique revealed spatio-temporal abnormalities in impulse propagation in Alzheimer’s disease. The arrival latency and propagation speed both differed in patients with Alzheimer’s disease. Our mapping of arterial territories revealed Alzheimer’s disease-specific modifications, including reversed impulse propagation around the hippocampi and in parietal cortical areas. The findings imply that pervasive abnormality in (peri)vascular CSF impulse propagation compromises vascular impulse propagation and subsequently glymphatic brain clearance ...
Biomarkers sensitive to prodromal or early pathophysiological changes in Alzheimer’s disease (AD)... more Biomarkers sensitive to prodromal or early pathophysiological changes in Alzheimer’s disease (AD) symptoms could improve disease detection and enable timely interventions. Changes in brain hemodynamics may be associated with the main clinical AD symptoms. To test this possibility, we measured the variability of blood oxygen level-dependent (BOLD) signal in individuals from three independent datasets (totaling 80 AD patients and 90 controls). We detected a replicable increase in brain BOLD signal variability in the AD populations, which constituted a robust biomarker for clearly differentiating AD cases from controls. Fast BOLD scans showed that the elevated BOLD signal variability in AD arises mainly from cardiovascular brain pulsations. Manifesting in abnormal cerebral perfusion and cerebrospinal fluid convection, present observation presents a mechanism explaining earlier observations of impaired glymphatic clearance associated with AD in humans.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
This is an open access article under the terms of the Creative Commons Attribution License, which... more This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Both functional magnetic resonance imaging (fMRI) and electrophysiological recordings have reveal... more Both functional magnetic resonance imaging (fMRI) and electrophysiological recordings have revealed that resting-state functional connectivity is temporally variable in human brain. Combined full-band electroencephalography-fMRI (fbEEG-fMRI) studies have shown that infraslow (<.1 Hz) fluctuations in EEG scalp potential are correlated with the blood-oxygen-level-dependent (BOLD) fMRI signals and that also this correlation appears variable over time. Here, we used simultaneous fbEEG-fMRI to test the hypothesis that correlation dynamics between BOLD and fbEEG signals could be explained by fluctuations in the activation properties of resting-state networks (RSNs) such as the extent or strength of their activation. We used ultrafast magnetic resonance encephalography (MREG) fMRI to enable temporally accurate and statistically robust short-time-window comparisons of infra-slow fbEEG and BOLD signals. We found that the temporal fluctuations in the fbEEG-BOLD correlation were dependent o...
Fluctuations in brain water content has attracted increasing interest, particularly as regards st... more Fluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS). We demonstrate the possibility to sense dynamic variations of water content between the skull and grey matter, for instance, in the subarachnoid space. Measured fluctuations in water content, especially in the cerebrospinal fluid (CSF), are assumed to be correlated with the dynamics of glymphatic circulation. The sampling volume for the NIRS optode was estimated by Monte Carlo modelling for the wavelengths of 660, 740, 830 and 980 nm. In addition, using combinations of these wavelengths, this article presents the calculation models for quantifying water and haemodynamics. The presented NIRS technique allows long-term functional brain monitoring, including sleeping time. Furthermore, it is used in combination with different magnetic neuroimaging techniques, particularly magnetic resonance encephalography. Using the combined setup, we report the preliminary results on the interaction between CSF and blood oxygen level-dependent fluctuations.
High doses of antipsychotics have been associated with loss in cortical and total gray matter in ... more High doses of antipsychotics have been associated with loss in cortical and total gray matter in schizophrenia. However, previous imaging studies have not taken benzodiazepine use into account, in spite of evidence suggesting adverse effects such as cognitive impairment and increased mortality. In this Northern Finland Birth Cohort 1966 study, 69 controls and 38 individuals with schizophrenia underwent brain MRI at the ages of 34 and 43 years. At baseline, the average illness duration was over 10 years. Brain structures were delineated using an automated volumetry system, volBrain, and medication data on cumulative antipsychotic and benzodiazepine doses were collected using medical records and interviews. We used linear regression with intracranial volume and sex as covariates; illness severity was also taken into account. Though both medication doses associated to volumetric changes in subcortical structures, after adjusting for each other and the average PANSS total score, higher ...
Early stressors play a key role in shaping interindividual differences in vulnerability to variou... more Early stressors play a key role in shaping interindividual differences in vulnerability to various psychopathologies, which according to the diathesis-stress model might relate to the elevated glucocorticoid secretion and impaired responsiveness to stress. Furthermore, previous studies have shown that individuals exposed to early adversity have deficits in emotion processing from faces. This study aims to explore whether early adversities associate with brain response to faces and whether this association might associate with the regional variations in mRNA expression of the glucocorticoid receptor gene (NR3C1). A total of 104 individuals drawn from the Northern Finland Brith Cohort 1986 participated in a face-task functional magnetic resonance imaging (fMRI) study. A large independent dataset (IMAGEN, N = 1739) was utilized for reducing fMRI data-analytical space in the NFBC 1986 dataset. Early adversities were associated with deviant brain response to fearful faces (MANCOVA, P = 0...
Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may... more Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD gr...
Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with met... more Studies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with methods that can provide a metabolic dimension to MEG investigations. In addition, continuous blood pressure measurements which comply with MEG compatibility requirements are lacking. For instance, by combining methods reflecting neurovascular status one could obtain more information on low frequency fluctuations that have recently gained increasing interest as a mediator of functional connectivity within brain networks. This paper presents a multimodal brain imaging setup, capable to non-invasively and continuously measure cerebral hemodynamic, cardiorespiratory and blood pressure oscillations simultaneously with MEG. In the setup, all methods apart from MEG rely on the use of fibre optics. In particular, we present a method for measuring of blood pressure and cardiorespiratory oscillations continuously with MEG. The potential of this type of multimodal setup for brain research is demonstrated by our preliminary studies on human, showing effects of mild hypercapnia, gathered simultaneously with the presented modalities. Combining different brain imaging techniques enables us to study the causality between complex neurological mechanisms and variables. For instance, an increase in neuronal activity causes a metabolic demand for glucose and oxygen, which increases cerebral blood flow to the active brain region. This kind of process is impossible to study accurately by any single imaging modality, but requires simultaneous use of hemodynamic and electromagnetic based imaging techniques. In consequence, multimodal imaging, such as electroencephalogram (EEG) with magnetoencephalography (MEG) or functional magnetic resonance imaging (fMRI) is a common practice in modern day neuroimaging. In addition, such imaging techniques would draw an advantage if cardiovascular and cerebral hemodynamic related signals are recorded comprehensive and in synchrony. This would extend our possibilities to acquire detailed knowledge of the functional interconnections between the brain and other organs and, for example, to study autoregulation of blood pressure (BP). MEG, closely related to EEG, measures the magnetic fields created by the electric currents, whereas EEG measures electric potentials by electrodes placed at certain points on the scalp. The main difference between the sources of EEG and MEG signals is that MEG only picks signals from the dendrites tangential to the head surface. Both of these methods can directly measure neuronal activity with a time resolution of less than one millisecond and with a high amount of channels, commonly MEG from 100 to 300 1. In general, EEG has a relatively modest spatial resolution, on the centimetre scale, whereas MEG has a higher spatial accuracy, few millimetres
Until now, melanopsin (OPN4) - a specialized photopigment being responsive especially to blue lig... more Until now, melanopsin (OPN4) - a specialized photopigment being responsive especially to blue light wavelengths - has not been found in the human brain at protein level outside the retina. More specifically, OPN4 has only been found in about 2% of retinal ganglion cells (i.e. in intrinsically photosensitive retinal ganglion cells), and in a subtype of retinal cone-cells. Given that Allen Institute for Brain Science has described a wide distribution of OPN4 mRNA in two human brains, we aimed to investigate whether OPN4 is present in the human brain also at protein level. Western blotting and immunohistochemistry, as well as immunoelectron microscopy, were used to analyse the existence and distribution of OPN4 protein in 18 investigated areas of the human brain in samples obtained in forensic autopsies from 10 male subjects (54 ± 3.5 years). OPN4 protein expression was found in all subjects, and, furthermore, in 5 out of 10 subjects in all investigated brain areas localized in membranous compartments and cytoplasmic vesicles of neurons. To our opinion, the wide distribution of OPN4 in central areas of the human brain evokes a question whether ambient light has important straight targets in the human brain outside the retinohypothalamic tract (RHT). Further studies are, however, needed to investigate the putative physiological phototransductive actions of inborn OPN4 protein outside the RHT in the human brain.
Antipsychotic medications and psychotic illness related factors may affect both weight and brain ... more Antipsychotic medications and psychotic illness related factors may affect both weight and brain structure in people with psychosis. Genetically high-risk individuals offer an opportunity to study the relationship between body mass index (BMI) and brain structure free from these potential confounds. We examined the effect of BMI on white matter (WM) microstructure in subjects with familial risk for psychosis (FR). We used diffusion tensor imaging and tract-based spatial statistics to explore the effect of BMI on whole brain FA in 42 (13 males) participants with FR and 46 (16 males) control participants aged 20-25 years drawn from general population-based Northern Finland Birth Cohort 1986. We also measured axial, radial and mean diffusivities. Most of the participants were normal weight rather than obese. In the FR group, decrease in fractional anisotropy and increase in radial diffusivity were associated with an increase in BMI in several brain areas. In controls the opposite pattern was seen in participants with higher BMI. There was a statistically significant interaction between group and BMI on FA and radial and mean diffusivities. Our results suggest that the effect of BMI on WM differs between individuals with FR for psychosis and controls.
ABSTRACT A non-invasive device for measuring blood oxygen variations in human brain is designed, ... more ABSTRACT A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source — detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, Jun 21, 2015
The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsa... more The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz)...
Uploads
Papers by Vesa Kiviniemi